939 resultados para Radiation Therapy
Resumo:
AIM of this study was the assessment of the radiation exposure from preparation and application of (90)Y-Zevalin, the measurement of the dose rate at the patient, the exposure of family members as well as the determination of the activity concentration in urine of patients. METHODS: Overall data from 31 therapeutic administrations carried out in four institutions were evaluated. During preparation and application of (90)Y-Zevalin the finger exposures of radiochemists, technicians, and physicians were measured. The dose rate of the patient was measured immediately after radioimmunotherapy. In patients treated in a nuclear medicine therapy unit, urine was collected over a two day period and the corresponding activity was determined. Family members of outpatients were asked to wear a dosimeter over a seven day period. RESULTS: During the preparation we found a maximum skin dose of 6 mSv at the average, and during application of 3 mSv, respectively. After administration of (90)Y the dose rate was 0.4 +/- 0.1 microSv/h at 2 m distance. Urine measurements yielded a cumulated 24 h excretion of 3.9 +/- 1.4% and 4.4 +/- 1.4% within 48 h, respectively, that is equivalent to 43 +/- 18 and 50 +/- 20 MBq of (90)Y, respectively. Family members received a radiation exposure of 40 +/- 14 microSv over seven days. CONCLUSION: During preparation and application of (90)Y-Zevalin appropriate radiation shielding is necessary. For family members as well as nursing staff no additional special radiation protection measures beyond those being common for other nuclear medicine procedures are necessary.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent endogenous activator of the cell death pathway and functions by activating the cell surface death receptors 4 and 5 (DR4 and DR5). TRAIL is nontoxic in vivo and preferentially kills neoplastically transformed cells over normal cells by an undefined mechanism. Radiotherapy is a common treatment for breast cancer as well as many other cancers. Here we demonstrate that ionizing radiation can sensitize breast carcinoma cells to TRAIL-induced apoptosis. This synergistic effect is p53-dependent and may be the result of radiation-induced up-regulation of the TRAIL-receptor DR5. Importantly, TRAIL and ionizing radiation have a synergistic effect in the regression of established breast cancer xenografts. Changes in tumor cellularity and extracellular space were monitored in vivo by diffusion-weighted magnetic resonance imaging (diffusion MRI), a noninvasive technique to produce quantitative images of the apparent mobility of water within a tissue. Increased water mobility was observed in combined TRAIL- and radiation-treated tumors but not in tumors treated with TRAIL or radiation alone. Histological analysis confirmed the loss of cellularity and increased numbers of apoptotic cells in TRAIL- and radiation-treated tumors. Taken together, our results provide support for combining radiation with TRAIL to improve tumor eradication and suggest that efficacy of apoptosis-inducing cancer therapies may be monitored noninvasively, using diffusion MRI.
Resumo:
Radiosensitizing Effect of Electrochemotherapy in a Fractionated Radiation Regimen in Radiosensitive Murine Sarcoma and Radioresistant Adenocarcinoma Tumor Model. Electrochemotherapy can potentiate the radiosensitizing effect of bleomycin, as shown in our previous studies. To bring this treatment closer to use in clinical practice, we evaluated the interaction between electrochemotherapy with bleomycin and single-dose or fractionated radiation in two murine tumor models with different histology and radiosensitivity. Radiosensitive sarcoma SA-1 and radioresistant adenocarcinoma CaNT subcutaneous tumors grown in A/J and CBA mice, respectively, were used. The anti-tumor effect and skin damage around the treated tumors were evaluated after electrochemotherapy with bleomycin alone or combined with single-dose radiation or a fractionated radiation regimen. The anti-tumor effectiveness of electrochemotherapy was more pronounced in SA-1 than CaNT tumors. In both tumor models, the tumor response to radiation was not significantly influenced by bleomycin alone or by electroporation alone. However, electrochemotherapy before the first tumor irradiation potentiated the response to a single-dose or fractionated radiation regimen in both tumors. For the fractionated radiation regimen, normal skin around the treated tumors was damaged fourfold less than for the single-dose regimen. Electrochemotherapy prior to single-dose irradiation induced more damage to the skin around the treated tumors and greater loss of body weight compared to other irradiated groups, whereas electrochemotherapy combined with the fractionated radiation regimen did not. Electrochemotherapy with low doses of bleomycin can also be used safely for radiosensitization of different types of tumors in a fractionated radiation regimen, resulting in a good anti-tumor effect and no major potentiating effect on radiation-induced skin damage. © 2009 by Radiation Research Society.
Resumo:
Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.
Resumo:
Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.
Resumo:
Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose different components. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements for radiotherapy. The international recommendations for are not directly applicable to BNCT dosimetry. The existing dosimetry guidance for BNCT provides recommendations but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be affected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) by the groups in the intercomparison were generally in agreement within the stated uncertainties. However, the uncertainties were large, ranging from 3-30% (1 standard deviation), emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. Microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.
Resumo:
The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in C-12(6+) beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in gamma-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G(0)/G(1) arrest and activated G(2)/M checkpoints. The pre-exposure to C-12(6+) beam significantly improved cell to apoptosis. RBEs for the C-12(6+)+ AdCMV-p53 infection groups were 30%-60%,20% -130% and 30%-70% more than those for the C-12(6+)_irradiated only, AdCMV-p53 infected only, and gamma-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose C-12(6+) beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.
Resumo:
Objective To investigate whether the irradiation with C-beam could enhance adenovirus-mediated transfer and expression of p53 in human hepatocellular carcinoma. Materials and methods HepG2 cells were exposed to C-beam or gamma-ray and then infected with replicationdeficient adenovirus recombinant vectors containing human wild-type p53 or green fluorescent protein, respectively. The transfer efficiency and expression level of the exogenous gene were detected by flow cytometric analysis. Cell survival fraction was detected by clonogenic assay. Results The transfer frequency in C-beam or gamma-irradiated groups increased by 50-83% and 5.7-38.0% compared with the control, respectively (P < 0.05). Compared with C-beam alone, p53 alone, and gamma-ray with p53, the percentages of p53 positive cells for 1 Gy C-beam with p53 increased by 56.0-72.0%, 63.5-82.0%, and 31.3-72.5% on first and third day after the treatments, respectively (P < 0.05). The survival fractions for the 2Gy C-bearn and AdCMV-p53 infection groups decreased to similar to 2%. Conclusion C-beam irradiation could significantly promote AdCMV-green fluorescent protein transfer and expression of p53.
Resumo:
PURPOSE: To investigate whether failure to suppress the prostate-specific antigen (PSA) level to /=2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy in patients scheduled to undergo external beam radiotherapy for localized prostate carcinoma is associated with reduced biochemical failure-free survival. METHODS AND MATERIALS: A retrospective case note review of consecutive patients with intermediate- or high-risk localized prostate cancer treated between January 2001 and December 2002 with neoadjuvant hormonal deprivation therapy, followed by concurrent hormonal therapy and radiotherapy was performed. Patient data were divided for analysis according to whether the PSA level in Week 1 of radiotherapy was 1 ng/mL in 52. At a median follow-up of 49 months, the 4-year actuarial biochemical failure-free survival rate was 84% vs. 60% (p = 0.0016) in favor of the patients with a PSA level after neoadjuvant hormonal deprivation therapy of 1 ng/mL at the beginning of external beam radiotherapy after >/=2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy have a significantly greater rate of biochemical failure and lower survival rate compared with those with a PSA level of
Resumo:
Driving high-level transgene expression in a tumour-specific manner remains a key requirement in the development of cancer gene therapy. We have previously demonstrated the strong anticancer effects of generating abnormally high levels of intracellular NO• following the overexpression of the inducible nitric oxide synthase (iNOS) gene. Much of this work has focused on utilizing exogenously activated promoters, which have been primarily induced using X-ray radiation. Here we further examine the potential of the pE9 promoter, comprising a combination of nine CArG radio-responsive elements, to drive the iNOS transgene. Effects of X-ray irradiation on promoter activity were compared in vitro under normoxic conditions and various degrees of hypoxia. The pE9 promoter generated high-level transgene expression, comparable with that achieved using the constitutively driven cytomegalovirus promoter. Furthermore, the radio-resistance of radiation-induced fibrosarcoma-1 (RIF-1) mouse sarcoma cells exposed to 0.1 and 0.01% O2 was effectively eliminated following transfection with the pE9/iNOS construct. Significant inhibition of tumour growth was also observed in vivo following direct intratumoural injection of the pE9/iNOS construct compared to empty vector alone (P<0.001) or to a single radiation dose of 10?Gy (P<0.01). The combination of both therapies resulted in a significant 4.25 day growth delay compared to the gene therapy treatment alone (P<0.001). In summary, we have demonstrated the potential of the pE9/iNOS construct for reducing radio-resistance conferred by tumour cell hypoxia in vitro and in vivo, with greater tumour growth delay observed following the treatment with the gene therapy construct as compared with radiotherapy alone.
Resumo:
Poly(vinyl alcohol)-borate complexes were evaluated as a potentially novel drug delivery platform suitable for in vivo use in photodynamic antimicrobial chemotherapy (PACT) of wound infections. An optimised formulation (8.0%w/w PVA, 2.0% w/w borax) was loaded with 1.0 mg ml(-1) of the photosensitisers Methylene Blue (MB) and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Both drugs were released to yield receiver compartment concentrations (>5.0 mu g ml(-1)) found to be phototoxic to both planktonic and bicifilm-grown methicillin-resistant Staphylococcus aureus (MRSA), a common cause of wound infections in hospitals. Newborn calf serum, used to simulate the conditions prevalent in an exuding wound, did not adversely affect the properties of the hydrogels and had no significant effect on the rate of TMP-mediated photodynamic kill of MRSA, despite appreciably reducing the fluence rate of incident light. However, MB-mediated photodynamic kill of MRSA was significantly reduced in the presence of calf serum and when the clinical isolate was grown in a biofilm. Results support the contention that delivery of MB or TMP using gel-type vehicles as part of PACT could make a contribution to the photodynamic eradication of MRSA from infected wounds. (C) 2009 Elsevier B.V. All rights reserved.