979 resultados para Quantum harmonic oscillator
Resumo:
We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.
Resumo:
Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any physical system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.
Resumo:
We derive the thermal correlators for twisted quantum fields on noncommutative spacetime. We show that the thermal expectation value of the number operator is same as in commutative spacetime, but that higher correlators are sensitive to the noncommutativity parameters phi(mu nu).
Resumo:
It is well known that n-length stabilizer quantum error correcting codes (QECCs) can be obtained via n-length classical error correction codes (CECCs) over GF(4), that are additive and self-orthogonal with respect to the trace Hermitian inner product. But, most of the CECCs have been studied with respect to the Euclidean inner product. In this paper, it is shown that n-length stabilizer QECCs can be constructed via 371 length linear CECCs over GF(2) that are self-orthogonal with respect to the Euclidean inner product. This facilitates usage of the widely studied self-orthogonal CECCs to construct stabilizer QECCs. Moreover, classical, binary, self-orthogonal cyclic codes have been used to obtain stabilizer QECCs with guaranteed quantum error correcting capability. This is facilitated by the fact that (i) self-orthogonal, binary cyclic codes are easily identified using transform approach and (ii) for such codes lower bounds on the minimum Hamming distance are known. Several explicit codes are constructed including two pure MDS QECCs.
Resumo:
We study the energy current in a model of heat conduction, first considered in detail by Casher and Lebowitz. The model consists of a one-dimensional disordered harmonic chain of n i.i.d. random masses, connected to their nearest neighbors via identical springs, and coupled at the boundaries to Langevin heat baths, with respective temperatures T_1 and T_n. Let EJ_n be the steady-state energy current across the chain, averaged over the masses. We prove that EJ_n \sim (T_1 - T_n)n^{-3/2} in the limit n \to \infty, as has been conjectured by various authors over the time. The proof relies on a new explicit representation for the elements of the product of associated transfer matrices.
Resumo:
This paper is concerned with the possibility of a direct second-order transition out of a collinear Neel phase to a paramagnetic spin liquid in two-dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second-order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an epsilon expansion. The existence of such a transition has a number of interesting implications for spin-liquid-based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin-liquid-based approach.
Resumo:
Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2 pi rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.
Resumo:
According to Wen's theory, a universal behavior of the fractional quantum Hall edge is expected at sufficiently low energies, where the dispersion of the elementary edge excitation is linear. A microscopic calculation shows that the actual dispersion is indeed linear at low energies, but deviates from linearity beyond certain energy, and also exhibits an "edge roton minimum." We determine the edge exponent from a microscopic approach, and find that the nonlinearity of the dispersion makes a surprisingly small correction to the edge exponent even at energies higher than the roton energy. We explain this insensitivity as arising from the fact that the energy at maximum spectral weight continues to show an almost linear behavior up to fairly high energies. We also study, in an effective-field theory, how interactions modify the exponent for a reconstructed edge with multiple edge modes. Relevance to experiment is discussed.
Resumo:
The biphenyl ethers (BPEs) are the potent inhibitors of TTR fibril formation and are efficient fibril disrupter. However, the mechanism by which the fibril disruption occurs is yet to be fully elucidated. To gain insight into the mechanism, we synthesized and used a new QD labeled BPE to track the process of fibril disruption. Our studies showed that the new BPE-QDs bind to the fiber uniformly and has affinity and specificity for TTR fiber and disrupted the pre-formed fiber at a relatively slow rate. Based on these studies we put forth the probable mechanism of fiber disruption by BPEs. Also, we show here that the BPE-QDs interact with high affinity to the amyloids of A beta(42), lysozyme and insulin. The potential of BPE-QDs in the detection of senile plaque in the brain of transgenic Alzheimer's mice has also been explored. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincaré recurrence time, the survival probability of still finding the system at timet in the same state in which it was prepared att=0 is exactly calculated.
Resumo:
We give an explicit, direct, and fairly elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses only some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory; therefore it would form useful supplementary reading for a graduate course on quantum mechanics.
Resumo:
In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of hybrid arrays of cadmium selenide quantum dots and polymer grafted gold nanoparticles have been prepared using a BCP template. Controlling the dispersion and location of the respective nanoparticles allows us to tune the exciton-plasmon interaction in such hybrid arrays and hence control their optical properties. The observed photoluminescence of the hybrid array films is interpreted in terms of the dispersion and location of the gold nanoparticles and quantum dots in the block copolymer matrix.