854 resultados para Probabilistic functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a similar manner as in some previous papers, where explicit algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper we deal with the space of the q-holonomic functions which are the solutions of linear q-differential equations with polynomial coefficients. The sum, product and the composition with power functions of q-holonomic functions are also q-holonomic and the resulting q-differential equations can be computed algorithmically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic thermodynamic functions, the entropy, free energy, and enthalpy, for element 105 (hahnium) in electronic configurations d^3 s^2, d^3 sp, and d^4s^1 and for its +5 ionized state (5f^14) have been calculated as a function of temperature. The data are based on the results of the calculations of the corresponding electronic states of element 105 using the multiconfiguration Dirac-Fock method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robots must act purposefully and successfully in an uncertain world. Sensory information is inaccurate or noisy, actions may have a range of effects, and the robot's environment is only partially and imprecisely modeled. This thesis introduces active randomization by a robot, both in selecting actions to execute and in focusing on sensory information to interpret, as a basic tool for overcoming uncertainty. An example of randomization is given by the strategy of shaking a bin containing a part in order to orient the part in a desired stable state with some high probability. Another example consists of first using reliable sensory information to bring two parts close together, then relying on short random motions to actually mate the two parts, once the part motions lie below the available sensing resolution. Further examples include tapping parts that are tightly wedged, twirling gears before trying to mesh them, and vibrating parts to facilitate a mating operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exam questions and solutions in LaTex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exam questions and solutions in PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions about vector functions and curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La variable aleatoria es una función matemática que permite asignar valores numéricos a cada uno de los posibles resultados obtenidos en un evento de naturaleza aleatoria. Si el número de estos resultados se puede contar, se tiene un conjunto discreto; por el contrario, cuando el número de resultados es infinito y no se puede contar, se tiene un conjunto continuo. El objetivo de la variable aleatoria es permitir adelantar estudios probabilísticos y estadísticos a partir del establecimiento de una asignación numérica a través de la cual se identifiquen cada uno de los resultados que pueden ser obtenidos en el desarrollo de un evento determinado. El valor esperado y la varianza son los parámetros por medio de los cuales es posible caracterizar el comportamiento de los datos reunidos en el desarrollo de una situación experimental; el valor esperado permite establecer el valor sobre el cual se centra la distribución de la probabilidad, mientras que la varianza proporciona información acerca de la manera como se distribuyen los datos obtenidos. Adicionalmente, las distribuciones de probabilidad son funciones numéricas asociadas a la variable aleatoria que describen la asignación de probabilidad para cada uno de los elementos del espacio muestral y se caracterizan por ser un conjunto de parámetros que establecen su comportamiento funcional, es decir, cada uno de los parámetros propios de la distribución suministra información del experimento aleatorio al que se asocia. El documento se cierra con una aproximación de la variable aleatoria a procesos de toma de decisión que implican condiciones de riesgo e incertidumbre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then screened using these classifiers. Results: A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45 proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the additional 25. Conclusions: The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also, different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their ability to induce protective immune responses against P. vivax malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Episodic Memory (EM) and the Executive Functions (EF) are cognitive areas that are affected in patients with diagnosis of Multiple Sclerosis (MS). Nowadays there exists scarce works destined to explore the infl uence of the EF on measures of mnesic performance in MS. For this reason, we analyze the effect of the EF on the performance in a set of memory measures. We worked with a clinical group (n=36) and with a control group (n=36) compared by age and educational level. The results show that the clinical group obtained significantly low average values in all the mnesic indexes (with exception of recognition) and in all the executive measures. All the executive indexes showed significant associations with some of the indexes of mnesic performance. These findings suggest that the problems in the episodic memory in EM patients could be analyzed as the manifestation of a global disorder that could be similar to the one that involves the EF.