978 resultados para Peritoneal Cavity -- cytology
Resumo:
Superconducting quarter-wave resonators, due to their compactness and their convenient shape for tuning and coupling, are very attractive for low-beta beam acceleration. In this paper, two types of cavities with different geometry have been numerically simulated: the first type with larger capacitive load in the beam line and the second type of lollipop-shape for 100 MHz, beta=0.06 beams; then the relative electromagnetic parameters and geometric sizes have been compared. It is found that the second type, whose structural design is optimized with the conical stem and shaping drift-tube, can support the better accelerating performance. At the end of the paper, some structural deformation effects on frequency shifts and appropriate solutions have been discussed.
Resumo:
In order to realize high energy density physics and plasma physics research at HIRFL-CSR, a magnetic alloy (MA)-loaded cavity has been studied. According to the theoretical calculation and simulation for the MA-loaded cavity, we achieved a better result. The MA-loaded cavity had a higher mu Q f value, with a higher shunt impedance and a higher accelerating gradient. The accelerating gradient was about 95 kV/m at 1.8003 MHz, 130 kV/m at 0.9000 MHz. Compared with the ferrite-loaded cavities that are used at HIRFL-CSR, with about 10 kV/m accelerating gradient, the MA-loaded cavity obviously has an advantage. The results of the theoretical calculation and the simulation, which meet the design requirements are in good agreement.
Resumo:
A high current RFQ (radio frequency quadrupole) is being studied at the Institute of Modern Physics, CAS for the direct plasma injection scheme. Shunt impedance is air important parameter when designing a 4-rod RFQ cavity, it reflects the RF efficiency of the cavity, and has a direct influence on the cost of the structure. Voltage distribution of a RFQ cavity has an effect on beam transmission, and particles would be lost if the actual voltage distribution is not as what, it should be. The influence of cell length, stern thickness and height on Shunt impedance and voltage distribution have been studied, in particular the effect of projecting electrodes has been investigated in detail.
Resumo:
A high-efficiency and low-cost spongelike Au/Pt core/shell electrocatalyst with hollow cavity has been facilely obtained via a simple two-step wet chemical process. Hollow gold nanospheres were first synthesized via a modified galvanic replacement reaction between Co nanoparticles in situ produced and HAUCl(4). The as-prepared gold hollow spheres were employed as seeds to further grow spongelike Pt shell. It is found that the surface of this hybrid nanomaterial owns many Pt nanospikes, which form a spongelike nanostructure. All experimental data including scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis-near-infrared spectroscopy have been employed to characterize the obtained Au/Pt hybrid nanomaterial. The rapid development of fuel cell has inspired us to investigate the electrocatalytic properties for dioxygen and methanol of this novel hybrid nanomaterial. Spongelike hybrid nanomaterial mentioned here exhibits much higher catalytic activity for dioxygen reduction and methanol oxidation than the common Pt electrode.
Resumo:
Herein we report the spectroscopic, electrochemical, TEM and DLS characterizations Of C-60 supramolecular inclusion complexes with alpha-, beta- and gamma-cyclodextrins prepared using anionic C-60. The results indicate that the cyclodextrin itself has little effect on the encapsulated C-60 or on the properties of the inclusion complex. Instead, the cyclodextrin has a significant influence on the aggregation behavior of individual complex in aqueous solution, which in turn affects the property of the supramolecular complex of cyclodextrin and C-60 greatly, As the cavity dimension of cyclodextrin becomes smaller as it changes from gamma-CD to beta-CD, and finally to alpha-CD, it is observed that more aggregation occurs for the corresponding inclusion complex in aqueous solution.
Resumo:
A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.
Resumo:
Although broadband incoherent light does not efficiently couple into a high-finesse optical cavity, its transmission is readily detectable and enables applications in cavity-enhanced absorption spectroscopy in the gas phase, liquid phase and on surfaces. This chapter gives an overview of measurement principles and experimental approaches implementing incoherent light sources in cavity-enhanced spectroscopic applications. The general principles of broadband CEAS are outlined and general “pros and cons” discussed, detailing aspects like cavity mirror reflectivity calibration or the establishment of detection limits. Different approaches concerning light sources, cavity design and detection schemes are discussed and a comprehensive overview of the current literature based on a methodological classification scheme is also presented.
Resumo:
Background: The use of mechanical and enzymatic techniques to isolate preantral follicles before in-vitro culture has been previously described. The aim of this study was to assess the effect of the isolation procedure of mouse preantral follicles on their subsequent development in vitro. Methods: Follicles were isolated either mechanically or enzymatically and cultured using an individual non-spherical culture system. Follicular development and steroidogenesis, oocyte in-vitro maturation and embryo development were assessed for both groups. Results: After 12 days of culture, follicles isolated mechanically had a higher survival rate but a lower antral-like cavity formation rate than follicles isolated enzymatically. Enzymatic follicle isolation was associated with a higher production of testosterone and estradiol compared with mechanical isolation. A stronger phosphatase alkaline reaction was observed after enzymatic isolation, suggesting that follicles isolated enzymatically had more theca cells than those isolated mechanically. However, both isolation techniques resulted in similar oocyte maturation and embryo development rates. Conclusions: Enzymatic follicular isolation did not affect theca cell development. Follicular steroidogenesis was enhanced after enzymatic isolation but the developmental capacity of oocytes was comparable to that obtained after mechanical isolation.
Resumo:
info:eu-repo/semantics/nonPublished