977 resultados para PLA farine stampa 3D additive manufacturing materiali compositi FDM annealing bio-compositi
Resumo:
Abstract Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Dissertação de mestrado em Engenharia Mecânica
Resumo:
The morphological evolution of the city of Braga has been the subject of several studies focusing on different urban areas in different periods. Using the accumulated knowledge provided by the available archaeological, historical and iconographic data of Braga, from the Roman times to the nineteenth century, we intend to present a working methodology for 3D representation of urban areas and its evolution, using the CityEngine ESRI tool. Different types of graphic and cartographic data will be integrated in an archaeological information system for the characterization of urban buildings. Linking this information system to the rules of characterization of urban spaces through the CityEngine tool, we can create the 3D urban spaces and their changes. The building characterization rules include several parameters of architectural elements that can be dynamically changed according the latest information. This methodology will be applied to the best known areas within of the city allowing the creation of different and dynamic layouts. Considerations about the concepts, challenges and constraints of using the CityEngine tool for recording and representing urban evolution knowledge will be discussed.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.
Resumo:
Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase in the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. We review the current "state-of-the-art" in 3D Tissue Engineering (TE) models developed for and used in cancer research. Scaffold-based TE models and microfluidics, are assessed for their potential to fill the gap between 2D models and clinical application. Recent advances in combining the principles of 3D TE models and microfluidics are discussed, with a special focus on biomaterials and the most promising chip-based 3D models.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Co-cultures of two or more cell types and biodegradable biomaterials of natural origin have been successfully combined to recreate tissue microenvironments. Segregated co-cultures are preferred over conventional mixed ones in order to better control the degree of homotypic and heterotypic interactions. Hydrogel-based systems in particular, have gained much attention to mimic tissue-specific microenvironments and they can be microengineered by innovative bottom-up approaches such as microfluidics. In this study, we developed bi-compartmentalized (Janus) hydrogel microcapsules of methacrylated hyaluronic acid (MeHA)/methacrylated-chitosan (MeCht) blended with marine-origin collagen by droplet-based microfluidics co-flow. Human adipose stem cells (hASCs) and microvascular endothelial cells (hMVECs) were co-encapsulated to create platforms of study relevant for vascularized bone tissue engineering. A specially designed Janus-droplet generator chip was used to fabricate the microcapsules (<250â μm units) and Janus-gradient co-cultures of hASCs: hMVECs were generated in various ratios (90:10; 75:25; 50:50; 25:75; 10:90), through an automated microfluidic flow controller (Elveflow microfluidics system). Such monodisperse 3D co-culture systems were optimized regarding cell number and culture media specific for concomitant maintenance of both phenotypes to establish effective cell-cell (homotypic and heterotypic) and cell-materials interactions. Cellular parameters such as viability, matrix deposition, mineralization and hMVECs re-organization in tube-like structures, were enhanced by blending MeHA/MeCht with marine-origin collagen and increasing hASCs: hMVECs co-culture gradient had significant impact on it. Such Janus hybrid hydrogel microcapsules can be used as a platform to investigate biomaterials interactions with distinct combined cell populations.
Resumo:
"Tissue engineering: part A", vol. 21, suppl. 1 (2015)
Resumo:
The aim of this paper is to predict time series of SO2 concentrations emitted by coal-fired power stations in order to estimate in advance emission episodes and analyze the influence of some meteorological variables in the prediction. An emission episode is said to occur when the series of bi-hourly means of SO2 is greater than a specific level. For coal-fired power stations it is essential to predict emission epi- sodes sufficiently in advance so appropriate preventive measures can be taken. We proposed a meth- odology to predict SO2 emission episodes based on using an additive model and an algorithm for variable selection. The methodology was applied to the estimation of SO2 emissions registered in sampling lo- cations near a coal-fired power station located in Northern Spain. The results obtained indicate a good performance of the model considering only two terms of the time series and that the inclusion of the meteorological variables in the model is not significant.
Resumo:
Relatório de estágio de mestrado em Média Interativos
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)