965 resultados para PAHs mixtures
Resumo:
The effect of liquid medium and its pressure on the photoluminescence of ZnO nanoparticles prepared via laser ablation of Zn targets in various water-ethanol mixtures is studied. As the ethanol content increases, the photoluminescence of the product changes, while metallic zinc is observed to emerge in nanomaterials prepared in ethanol-rich environments. The applied pressure had a less profound effect, mainly affecting materials produced in water or water-ethanol, and much less those generated in pressurized ethanol. Tuning the reactivity of the liquid and pressurizing it during laser ablation is demonstrated to be promising for tailoring the emission properties of the product.
Resumo:
The objective of this study is to demonstrate using weak form partial differential equation (PDE) method for a finite-element (FE) modeling of a new constitutive relation without the need of user subroutine programming. The viscoelastic asphalt mixtures were modeled by the weak form PDE-based FE method as the examples in the paper. A solid-like generalized Maxwell model was used to represent the deforming mechanism of a viscoelastic material, the constitutive relations of which were derived and implemented in the weak form PDE module of Comsol Multiphysics, a commercial FE program. The weak form PDE modeling of viscoelasticity was verified by comparing Comsol and Abaqus simulations, which employed the same loading configurations and material property inputs in virtual laboratory test simulations. Both produced identical results in terms of axial and radial strain responses. The weak form PDE modeling of viscoelasticity was further validated by comparing the weak form PDE predictions with real laboratory test results of six types of asphalt mixtures with two air void contents and three aging periods. The viscoelastic material properties such as the coefficients of a Prony series model for the relaxation modulus were obtained by converting from the master curves of dynamic modulus and phase angle. Strain responses of compressive creep tests at three temperatures and cyclic load tests were predicted using the weak form PDE modeling and found to be comparable with the measurements of the real laboratory tests. It was demonstrated that the weak form PDE-based FE modeling can serve as an efficient method to implement new constitutive models and can free engineers from user subroutine programming.
Resumo:
Functionality of an open graded friction course (OGFC) depends on the high interconnected air voids or pores of the OGFC mixture. The authors' previous study indicated that the pores in the OGFC mixture were easily clogged by rutting deformation. Such a deformation-related clogging can cause a significant rutting-induced permeability loss in the OGFC mixture. The objective of this study was to control and reduce the rutting-induced permeability loss of the OGFC based on mixture design and layer thickness. Eight types of the OGFC mixtures with different air void contents, gradations, and nominal maximum aggregate sizes were fabricated in the laboratory. Wheel-tracking rutting tests were conducted on the OGFC slabs to simulate the deformation-related clogging. Permeability tests after different wheel load applications were performed on the rutted OGFC slabs using a falling head permeameter developed in the authors' previous study. The relationships between permeability loss and rutting depth as well as dynamic stability were developed based on the eight OGFC mixtures' test results. The thickness effects of the single-layer and the two-layer OGFC slabs were also discussed in terms of deformation-related clogging and the rutting-induced permeability loss. Results showed that the permeability coefficient decreases linearly with an increasing rutting depth of the OGFC mixtures. Rutting depth was recommended as a design index to control permeability loss of the OGFC mixture rather than the dynamic stability. Permeability loss due to deformation-related clogging can be effectively reduced by using a thicker single-layer OGFC or two-layer OGFC.
Resumo:
In Sweden, during recent years, a new type of mixing protocol has been applied, in which the order of mixing is changed from the conventional method. Improved workability and diminished mixing and compaction energy needs have been important drivers for this. Considering that it is the mastic phase, which is modified by changing the mixing order, it provides an interesting case study for explaining the mechanisms of workability in connection with the mastic phase. To do so, an analytical viscosity framework was combined with a mixture morphology framework to upscale to the mixing level and tribology principles to explain the interaction between the mastic and the aggregates. From the mastic viscosity protocol, it was found that the mixing order significantly affects the resulting mastic viscosity. To analyse the effect of this on the workability and resulting mixture performance, X-ray computed tomography was used to analyse mixtures produced by the two different mixing sequences. Mechanical testing was utilised to determine the long-term mechanical performance. In this part of the study, mastic viscosity as a function of particle concentration and distribution was directly coupled to improved mixture workability and enhanced long-term performance.
Resumo:
Mixture experiments are typical for chemical, food, metallurgical and other industries. The aim of these experiments is to find optimal component proportions that provide desired values of some product performance characteristics.
Resumo:
Pavement analysis and design for fatigue cracking involves a number of practical problems like material assessment/screening and performance prediction. A mechanics-aided method can answer these questions with satisfactory accuracy in a convenient way when it is appropriately implemented. This paper presents two techniques to implement the pseudo J-integral based Paris’ law to evaluate and predict fatigue cracking in asphalt mixtures and pavements. The first technique, quasi-elastic simulation, provides a rational and appropriate reference modulus for the pseudo analysis (i.e., viscoelastic to elastic conversion) by making use of the widely used material property: dynamic modulus. The physical significance of the quasi-elastic simulation is clarified. Introduction of this technique facilitates the implementation of the fracture mechanics models as well as continuum damage mechanics models to characterize fatigue cracking in asphalt pavements. The second technique about modeling fracture coefficients of the pseudo J-integral based Paris’ law simplifies the prediction of fatigue cracking without performing fatigue tests. The developed prediction models for the fracture coefficients rely on readily available mixture design properties that directly affect the fatigue performance, including the relaxation modulus, air void content, asphalt binder content, and aggregate gradation. Sufficient data are collected to develop such prediction models and the R2 values are around 0.9. The presented case studies serve as examples to illustrate how the pseudo J-integral based Paris’ law predicts fatigue resistance of asphalt mixtures and assesses fatigue performance of asphalt pavements. Future applications include the estimation of fatigue life of asphalt mixtures/pavements through a distinct criterion that defines fatigue failure by its physical significance.
Resumo:
A lot of mixed vitrified waste exists at DOE sites, which contain valuable metal having great potential for being reused in industry. Of these useful metals, steel constitutes more than 45% of the volume. Using the differential centrifugal separation technology, steel is separated by using remote melting of the mixed waste. The high costs involved are directly proportional to the time involved in separation of the steel from the mixed waste. This is determined by using similitude principles. Having obtained a solidified steel ingot by melting, it is essential to determine the decontaminated portions of the ingot that can be released to industry. Two parameters representing measures of separation are proposed—the Centrifugal Fluid Separation Number and the Thermal Separation Number. Regression correlations are determined to express the estimated time of separation. Experimental analysis of solidified ingots has shown that when the Thermal Separation Number is less than 1700 the steel contains little or no trace of glass. This result can be used to recycle steel back to industry. ^
Resumo:
This dissertation utilized electrospray ion mobility mass spectrometry (ESI-IMS-MS) to develop methods necessary for the separation of chiral compounds of forensic interest. The compounds separated included ephedrines and pseudoephedrines, that occur as impurities in confiscated amphetamine type substances (ATS) in an effort to determine the origin of these substances. The ESI-IMS-MS technique proved to be faster and more cost effective than traditional chromatographic methods currently used to conduct chiral separations such as gas and liquid chromatography. Both mass spectrometric and computational analysis revealed the separation mechanism of these chiral interactions allowing for further development to separate other chiral compounds by IMS. Successful separation of chiral compounds was achieved utilizing a variety of modifiers injected into the IMS drift tube. It was found that the modifiers themselves did not need to be chiral in nature and that achiral modifiers were sufficient in performing the required separations. The ESI-IMS-MS technique was also used to detect thermally labile compounds which are commonly found in explosive substances. The methods developed provided mass spectrometric identification of the type of ionic species being detected from explosive analytes as well as the appropriate solvent that enhances detection of these analytes in either the negative or positive ion mode. An application of the developed technique was applied to the analysis of a variety of low explosive smokeless powder samples. It was found that the developed ESI-IMS-MS technique not only detected the components of the smokeless powders, but also provided data that allowed the classification of the analyzed smokeless powders by manufacturer or make. ^
Resumo:
The work described in this thesis revolves around the 1,1,n,ntetramethyl[n](2,11)teropyrenophanes, which are a series of [n]cyclophanes with a severely bent, board-shaped polynuclear aromatic hydrocarbons (PAH). The thesis is divided into seven Chapters. The first Chapter conatins an overview of the seminal work on [n]cyclophanes of the first two members of the “capped rylene” series of PAHs: benzene and pyrene. Three different general strategies for the synthesis of [n]cyclophanes are discussed and this leads in to a discussion of some slected syntheses of [n]paracyclopahnes and [n](2,7)pyrenophanes. The chemical, structural, spectroscopic and photophysical properties of these benzene and pyrene-derived cyclophanes are discussed with emphasis on the changes that occur with changes in the structure of the aromatic system. Chapter 1 concludes with a brief introduction to [n]cyclophanes of the fourth member of the capped rylene series of PAHs: teropyrene. The focus of the work described in Chapter 2 is the synthesis of of 1,1,n,ntetramethyl[n](2,11)teropyrenophane (n = 6 and 7) using a double-McMurry strategy. While the synthesis 1,1,7,7-tetramethyl[7](2,11)teropyrenophane was successful, the synthesis of the lower homologue 1,1,6,6-tetramethyl[6](2,11)teropyrenophane was not. The conformational behaviour of [n.2]pyrenophanes was also studied by 1H NMR spectroscopy and this provided a conformation-based rationale for the failure of the synthesis of 1,1,6,6-tetramethyl[6](2,11)teropyrenophane. Chapter 3 contains details of the synthesis of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7-9) using a Wurtz / McMurry strategy, which proved to be more general than the double McMurry strategy. The three teropyrenophanes were obtained in ca. 10 milligram quantities. Trends in the spectroscopic properties that accompany changes in the structure of the teropyrene system are discussed. A violation of Kasha’s rule was observed when the teropyrenophanes were irradiated at 260 nm. The work described in the fourth Chapter concentrates on the development of gram-scale syntheses of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) using the Wurtz / McMurry strategy. Several major modifications to the orginal synthetic pathway had to be made to enable the first several steps to be performed comfortably on tens of grams of material. Solubility problems severely limited the amount of material that could be produced at a late stage of the synthetic pathways leading to the evennumbered members of the series (n = 8, 10). Ultimately, only 1,1,9,9- tetramethyl[9](2,11)teropyrenophane was synthesized on a multi-gram scale. In the final step in the synthesis, a valence isomerization / dehydrogenation (VID) reaction, the teropyrenophane was observed to become unstable under the conditions of its formation at n = 8. The synthesis of 1,1,10,10-tetramethyl[10](2,11)teropyrenophane was achieved for the first time, but only on a few hundred milligram scale. In Chapter 5, the results of an investigation of the electrophilic aromatic bromination of the 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) are presented. Being the most abundant cyclophane, most of the work was performed on 1,1,9,9-tetramethyl[9](2,11)teropyrenophane. Reaction of this compound with varying amounts of of bromine revealed that bromination occurs most rapidly at the symmetryrelated 4, 9, 13 and 18 positions (teropyrene numbering) and that the 4,9,13,18- tetrabromide could be formed exclusively. Subsequent bromination occurs selectively on the symmetry-related 6, 7, 15 and 16 positions (teropyrene numbering), but considerably more slowly. Only mixtures of penta-, hexa-, hepta and octabromides could be formed. Bromination reactions of the higher and lower homologues (n = 7, 8 and 10) revealed that the reactivity of the teropyrene system increased with the degree of bend. Crystal structures of some tetra-, hexa-, hepta- and octa-brominated products were obtained. The goal of the work described in Chapter 6 is to use 1,1,9,9- tetramethyl[9](2,11)teropyrenophane as a starting material for the synthesis of warped nanographenophanes. A bromination, Suzuki-Miyaura, cyclodehydrogenation sequence was unsuccessful, as was a C–H arylation / cyclodehydrogenation approach. Itami’s recently-developed K-region-selective annulative -extension (APEX) reaction proved to be successful, affording a giant [n]cyclophane with a C84 PAH. Attempted bay-region Diels-Alder reactions and some cursory host-guest chemistry of teropyrenophanes are also discussed. In Chapter 7 a synthetic approach toward a planar model compound, 2,11-di-tbutylteropyrene, is described. The synthesis could not be completed owing to solubility problems at the end of the synthetic pathway.
Resumo:
In the present work, the deviations in the solubility of CO2, CH4, and N2 at 30 °c in the mixed gases (CO2/CH4) and (CO2/N2) from the pure gas behavior were studied using the dual-mode model over a wide range of equilibrium composition and pressure values in two glassy polymers. The first of which was PI-DAR which is the polyimide formed by the reaction between 4, 6-diaminoresorcinol dihydrochloride (DAR-Cl) and 2, 2’-bis-(3, 4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). The other glassy polymer was TR-DAR which is the corresponding thermally rearranged polymer of PI-DAR. Also, mixed gas sorption experiments for the gas mixture (CO2/CH4) in TR-DAR at 30°c took place in order to assess the degree of accuracy of the dual-mode model in predicting the true mixed gas behavior. The experiments were conducted on a pressure decay apparatus coupled with a gas chromatography column. On the other hand, the solubility of CO2 and CH4 in two rubbery polymers at 30⁰c in the mixed gas (CO2/CH4) was modelled using the Lacombe and Sanchez equation of state at various values of equilibrium composition and pressure. These two rubbery polymers were cross-linked poly (ethylene oxide) (XLPEO) and poly (dimethylsiloxane) (PDMS). Moreover, data about the sorption of CO2 and CH4 in liquid methyl dietahnolamine MDEA that was collected from literature65-67 was used to determine the deviations in the sorption behavior in the mixed gas from that in the pure gases. It was observed that the competition effects between the penetrants were prevailing in the glassy polymers while swelling effects were predominant in the rubbery polymers above a certain value of the fugacity of CO2. Also, it was found that the dual-mode model showed a good prediction of the sorption of CH4 in the mixed gas for small pressure values but in general, it failed to predict the actual sorption of the penetrants in the mixed gas.
Resumo:
Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Industries region of the Elizabeth River, Virginia, have passed polycyclic aromatic hydrocarbon (PAH) resistance to their offspring as evidenced by early life stage testing of developmental toxicity after exposure to specific PAHs. Our study focused on environmentally relevant PAH mixtures in the form of Elizabeth River sediment extract (ERSE). Juvenile (5 month) F1 progeny of pollution-adapted Atlantic Wood (AW) parents and of reference site (King's Creek [KC]) parents were exposed as embryos to ERSE. Liver alterations, including nonneoplastic lesions and microvesicular vacuolation, were observed in both populations. ERSE-exposed KC fish developed significantly more alterations than unexposed KC fish. Interestingly, unexposed AW killifish developed significantly more alterations than unexposed KC individuals, suggesting that AW juveniles are not fully protected from liver disease; rapid growth of juvenile fish may also be an accelerating factor for tumorigenesis. Because recent reports show hepatic tumor formation in adult AW fish, the differing responses from the 2 populations provided a way to determine whether embryo toxicity protection extends to juveniles. Future investigations will analyze older life stages of killifish to determine differences in responses related to chronic disease.
Resumo:
Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment.
Resumo:
Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.
Resumo:
Mixtures of Zellner's g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to Generalized Linear Models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this paper, we extend mixtures of g-priors to GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1+g) and illustrate how this prior distribution encompasses several special cases of mixtures of g-priors in the literature, such as the Hyper-g, truncated Gamma, Beta-prime, and the Robust prior. Under an integrated Laplace approximation to the likelihood, the posterior distribution of 1/(1+g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically. We discuss the local geometric properties of the g-prior in GLMs and show that specific choices of the hyper-parameters satisfy the various desiderata for model selection proposed by Bayarri et al, such as asymptotic model selection consistency, information consistency, intrinsic consistency, and measurement invariance. We also illustrate inference using these priors and contrast them to others in the literature via simulation and real examples.