918 resultados para Optimal Sampling Time
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.
Resumo:
Protecting a network against link failures is a major challenge faced by network operators. The protection scheme has to address two important objectives - fast recovery and minimizing the amount of backup resources needed. Every protection algorithm is a tradeoff between these two objectives. In this paper, we study the problem of segment protection. In particular, we investigate what is the optimal segment size that obtains the best tradeoff between the time taken for recovery and minimizing the bandwidth used by the backup segments. We focus on the uniform fixed-length segment protection method, where each primary path is divided into fixed-length segments, with the exception of the last segment in the path. We observe that the optimal segment size for a given network depends on several factors such as the topology and the ratio of the costs involved.
Resumo:
Killer whale (Orcinus orca Linnaeus, 1758) abundance in the North Pacific is known only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line-transect ship surveys were conducted in July and August of 2001–2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional and Multiple Covariate Distance Sampling methods were used to estimate the abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two data sets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting, and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups.
Resumo:
Contamination by butyltin compounds (BTs) has been reported in estuarine environments worldwide, with serious impacts on the biota of these areas. Considering that BTs can be degraded by varying environmental conditions such as incident light and salinity, the short-term variations in such factors may lead to inaccurate estimates of BTs concentrations in nature. Therefore, the present study aimed to evaluate the possibility that measurements of BTs in estuarine sediments are influenced by different sampling conditions, including period of the day (day or night), tidal zone (intertidal or subtidal), and tides (high or low). The study area is located on the Brazilian southeastern coast, Sao Vicente Estuary, at Pescadores Beach, where BT contamination was previously detected. Three replicate samples of surface sediment were collected randomly in each combination of period of the day, tidal zone, and tide condition, from three subareas along the beach, totaling 72 samples. BTs were analyzed by GC-PFPD using a tin filter and a VF-5 column, by means of a validated method. The concentrations of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) ranged from undetectable to 161 ng Sn g(-1) (d.w.). In most samples (71%), only MBT was quantifiable, whereas TBTs were measured in only 14, suggesting either an old contamination or rapid degradation processes. DBT was found in 27 samples, but could be quantified in only one. MBT concentrations did not differ significantly with time of day, zones, or tide conditions. DBT and TBT could not be compared under all these environmental conditions, because only a few samples were above the quantification limit. Pooled samples of TBT did not reveal any difference between day and night. These results indicated that, in assessing contamination by butyltin compounds, surface-sediment samples can be collected in any environmental conditions. However, the wide variation of BTs concentrations in the study area, i.e., over a very small geographic scale, illustrates the need for representative hierarchical and composite sampling designs that are compatible with the multiscalar temporal and spatial variability common to most marine systems. The use of such sampling designs will be necessary for future attempts to quantitatively evaluate and monitor the occurrence and impact of these compounds in nature
Resumo:
Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.
Resumo:
Purpose: There is no consensus on the optimal method to measure delivered dialysis dose in patients with acute kidney injury (AKI). The use of direct dialysate-side quantification of dose in preference to the use of formal blood-based urea kinetic modeling and simplified blood urea nitrogen (BUN) methods has been recommended for dose assessment in critically-ill patients with AKI. We evaluate six different blood-side and dialysate-side methods for dose quantification. Methods: We examined data from 52 critically-ill patients with AKI requiring dialysis. All patients were treated with pre-dilution CWHDF and regional citrate anticoagulation. Delivered dose was calculated using blood-side and dialysis-side kinetics. Filter function was assessed during the entire course of therapy by calculating BUN to dialysis fluid urea nitrogen (FUN) ratios q/12 hours. Results: Median daily treatment time was 1,413 min (1,260-1,440). The median observed effluent volume per treatment was 2,355 mL/h (2,060-2,863) (p<0.001). Urea mass removal rate was 13.0 +/- 7.6 mg/min. Both EKR (r(2)=0.250; p<0.001) and K-D (r(2)=0.409; p<0.001) showed a good correlation with actual solute removal. EKR and K-D presented a decline in their values that was related to the decrease in filter function assessed by the FUN/BUN ratio. Conclusions: Effluent rate (ml/kg/h) can only empirically provide an estimated of dose in CRRT. For clinical practice, we recommend that the delivered dose should be measured and expressed as K-D. EKR also constitutes a good method for dose comparisons over time and across modalities.
Resumo:
Purpose: To estimate the metabolic activity of rectal cancers at 6 and 12 weeks after completion of chemoradiation therapy (CRT) by 2-[fluorine-18] fluoro-2-deoxy-D-glucose-labeled positron emission tomography/computed tomography ([18 FDG] PET/CT) imaging and correlate with response to CRT. Methods and Materials: Patients with cT2-4N0-2M0 distal rectal adenocarcinoma treated with long-course neoadjuvant CRT (54 Gy, 5-fluouracil-based) were prospectively studied (ClinicalTrials. org identifier NCT00254683). All patients underwent 3 PET/CT studies (at baseline and 6 and 12 weeks fromCRT completion). Clinical assessment was at 12 weeks. Maximal standard uptakevalue (SUVmax) of the primary tumor wasmeasured and recorded at eachPET/CTstudy after 1 h (early) and3 h (late) from 18 FDGinjection. Patientswith an increase in early SUVmax between 6 and 12 weeks were considered " bad" responders and the others as "good" responders. Results: Ninety-one patients were included; 46 patients (51%) were "bad" responders, whereas 45 (49%) patients were " good" responders. " Bad" responders were less likely to develop complete clinical response (6.5% vs. 37.8%, respectively; PZ. 001), less likely to develop significant histological tumor regression (complete or near-complete pathological response; 16% vs. 45%, respectively; PZ. 008) and exhibited greater final tumor dimension (4.3cmvs. 3.3cm; PZ. 03). Decrease between early (1 h) and late (3 h) SUVmax at 6-week PET/CTwas a significant predictor of " good" response (accuracy of 67%). Conclusions: Patients who developed an increase in SUVmax after 6 weeks were less likely to develop significant tumor downstaging. Early-late SUVmax variation at 6-week PET/CT may help identify these patients and allow tailored selection of CRT-surgery intervals for individual patients. (C) 2012 Elsevier Inc.
Resumo:
Within-site variability in species detectability is a problem common to many biodiversity assessments and can strongly bias the results. Such variability can be caused by many factors, including simple counting inaccuracies, which can be solved by increasing sample size, or by temporal changes in species behavior, meaning that the way the temporal sampling protocol is designed is also very important. Here we use the example of mist-netted tropical birds to determine how design decisions in the temporal sampling protocol can alter the data collected and how these changes might affect the detection of ecological patterns, such as the species-area relationship (SAR). Using data from almost 3400 birds captured from 21,000 net-hours at 31 sites in the Brazilian Atlantic Forest, we found that the magnitude of ecological trends remained fairly stable, but the probability of detecting statistically significant ecological patterns varied depending on sampling effort, time of day and season in which sampling was conducted. For example, more species were detected in the wet season, but the SAR was strongest in the dry season. We found that the temporal distribution of sampling effort was more important than its total amount, discovering that similar ecological results could have been obtained with one-third of the total effort, as long as each site had been equally sampled over 2 yr. We discuss that projects with the same sampling effort and spatial design, but with different temporal sampling protocol are likely to report different ecological patterns, which may ultimately lead to inappropriate conservation strategies.
Resumo:
This study aims to analyse the degree of completeness of world inventory of the mite family Phytoseiidae and the factors that might determine the process of species description. The world data set includes 2,122 valid species described from 1839 to 2010. Species accumulation curves were analysed. The effect of localisation (latitude ranges) and body size on the species description patterns over space and time was assessed. A low proportion of species seems remain to be described, but this trend could be explained by a critical reduction in the number of specialists dedicated to the study of those mites. In addition, this trend refers to the areas where phytoseiids have been well studied around the world, and it may change considerably if the study of these mites would be intensified in some areas. The number of newly described species is lower near the tropics, and their body size is also smaller. Differences in body size were noted between the three sub-families of Phytoseiidae, the highest mean body lengths of adult females being observed for Amblyseiinae, the most diverse family. In the future, collections would have certainly to take into consideration such conclusions for instance in using more adequate optical equipment especially for field collections. The decrease in the number of phytoseiid mite described was confirmed and the factors that could explain such a trend are discussed. Information for improving further inventories is provided and discussed, especially in relation to sampling localization and study methods.
Resumo:
Abstract Background Prior to the selection of disinfectants for low, intermediate and high (sterilizing) levels, the decimal reduction time, D-value, for the most common and persistent bacteria identified at a health care facility should be determined. Methods The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension (104 – 105 CFU/mL for vegetative and spore forms). At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. Results The highest D-values for various bacteria were determined for the following solutions: (i) 0.1% sodium dichloroisocyanurate (pH 7.0) – E. coli and A. calcoaceticus (D = 5.9 min); (ii) sodium hypochlorite (pH 7.0) at 0.025% for B. stearothermophilus (D = 24 min), E. coli and E. cloacae (D = 7.5 min); at 0.05% for B. stearothermophilus (D = 9.4 min) and E. coli (D = 6.1 min) and 0.1% for B. stearothermophilus (D = 3.5 min) and B. subtilis (D = 3.2 min); (iii) 2.0% glutaraldehyde (pH 7.4) – B. stearothermophilus, B. subtilis (D = 25 min) and E. coli (D = 7.1 min); (iv) 0.5% formaldehyde (pH 6.5) – B. subtilis (D = 11.8 min), B. stearothermophilus (D = 10.9 min) and A. calcoaceticus (D = 5.2 min); (v) 2.0% chlorhexidine (pH 6.2) – B. stearothermophilus (D = 9.1 min), and at 0.4% for E. cloacae (D = 8.3 min); (vi) 1.0% Minncare® (peracetic acid and hydrogen peroxide, pH 2.3) – B. stearothermophilus (D = 9.1 min) and E. coli (D = 6.7 min). Conclusions The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations showed that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasizes the importance and need to develop routine and novel programs to evaluate product utility.
Resumo:
This work proposes a system for classification of industrial steel pieces by means of magnetic nondestructive device. The proposed classification system presents two main stages, online system stage and off-line system stage. In online stage, the system classifies inputs and saves misclassification information in order to perform posterior analyses. In the off-line optimization stage, the topology of a Probabilistic Neural Network is optimized by a Feature Selection algorithm combined with the Probabilistic Neural Network to increase the classification rate. The proposed Feature Selection algorithm searches for the signal spectrogram by combining three basic elements: a Sequential Forward Selection algorithm, a Feature Cluster Grow algorithm with classification rate gradient analysis and a Sequential Backward Selection. Also, a trash-data recycling algorithm is proposed to obtain the optimal feedback samples selected from the misclassified ones.
Resumo:
Das Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) der Firma Aerodyne ist eine Weiterentwicklung des Aerodyne Aerosolmassenspektrometers (Q-AMS). Dieses ist gut charakterisiert und kommt weltweit zum Einsatz. Beide Instrumente nutzen eine aerodynamische Linse, aerodynamische Partikelgrößenbestimmung, thermische Verdampfung und Elektronenstoß-Ionisation. Im Gegensatz zum Q-AMS, wo ein Quadrupolmassenspektrometer zur Analyse der Ionen verwendet wird, kommt beim ToF-AMS ein Flugzeit-Massenspektrometer zum Einsatz. In der vorliegenden Arbeit wird anhand von Laborexperimenten und Feldmesskampagnen gezeigt, dass das ToF-AMS zur quantitativen Messung der chemischen Zusammensetzung von Aerosolpartikeln mit hoher Zeit- und Größenauflösung geeignet ist. Zusätzlich wird ein vollständiges Schema zur ToF-AMS Datenanalyse vorgestellt, dass entwickelt wurde, um quantitative und sinnvolle Ergebnisse aus den aufgenommenen Rohdaten, sowohl von Messkampagnen als auch von Laborexperimenten, zu erhalten. Dieses Schema basiert auf den Charakterisierungsexperimenten, die im Rahmen dieser Arbeit durchgeführt wurden. Es beinhaltet Korrekturen, die angebracht werden müssen, und Kalibrationen, die durchgeführt werden müssen, um zuverlässige Ergebnisse aus den Rohdaten zu extrahieren. Beträchtliche Arbeit wurde außerdem in die Entwicklung eines zuverlässigen und benutzerfreundlichen Datenanalyseprogramms investiert. Dieses Programm kann zur automatischen und systematischen ToF-AMS Datenanalyse und –korrektur genutzt werden.
Resumo:
Wir untersuchen die numerische Lösung des inversen Streuproblems der Rekonstruktion der Form, Position und Anzahl endlich vieler perfekt leitender Objekte durch Nahfeldmessungen zeitharmonischer elektromagnetischer Wellen mit Hilfe von Metalldetektoren. Wir nehmen an, dass sich die Objekte gänzlich im unteren Halbraum eines unbeschränkten zweischichtigen Hintergrundmediums befinden. Wir nehmen weiter an, dass der obere Halbraum mit Luft und der untere Halbraum mit Erde gefüllt ist. Wir betrachten zuerst die physikalischen Grundlagen elektromagnetischer Wellen, aus denen wir zunächst ein vereinfachtes mathematisches Modell ableiten, in welchem wir direkt das elektromagnetische Feld messen. Dieses Modell erweitern wir dann um die Messung des elektromagnetischen Feldes von Sendespulen mit Hilfe von Empfangsspulen. Für das vereinfachte Modell entwickeln wir, unter Verwendung der Theorie des zugehörigen direkten Streuproblems, ein nichtiteratives Verfahren, das auf der Idee der sogenannten Faktorisierungsmethode beruht. Dieses Verfahren übertragen wir dann auf das erweiterte Modell. Wir geben einen Implementierungsvorschlag der Rekonstruktionsmethode und demonstrieren an einer Reihe numerischer Experimente die Anwendbarkeit des Verfahrens. Weiterhin untersuchen wir mehrere Abwandlungen der Methode zur Verbesserung der Rekonstruktionen und zur Verringerung der Rechenzeit.
Resumo:
Hybrid vehicles (HV), comprising a conventional ICE-based powertrain and a secondary energy source, to be converted into mechanical power as well, represent a well-established alternative to substantially reduce both fuel consumption and tailpipe emissions of passenger cars. Several HV architectures are either being studied or already available on market, e.g. Mechanical, Electric, Hydraulic and Pneumatic Hybrid Vehicles. Among the others, Electric (HEV) and Mechanical (HSF-HV) parallel Hybrid configurations are examined throughout this Thesis. To fully exploit the HVs potential, an optimal choice of the hybrid components to be installed must be properly designed, while an effective Supervisory Control must be adopted to coordinate the way the different power sources are managed and how they interact. Real-time controllers can be derived starting from the obtained optimal benchmark results. However, the application of these powerful instruments require a simplified and yet reliable and accurate model of the hybrid vehicle system. This can be a complex task, especially when the complexity of the system grows, i.e. a HSF-HV system assessed in this Thesis. The first task of the following dissertation is to establish the optimal modeling approach for an innovative and promising mechanical hybrid vehicle architecture. It will be shown how the chosen modeling paradigm can affect the goodness and the amount of computational effort of the solution, using an optimization technique based on Dynamic Programming. The second goal concerns the control of pollutant emissions in a parallel Diesel-HEV. The emissions level obtained under real world driving conditions is substantially higher than the usual result obtained in a homologation cycle. For this reason, an on-line control strategy capable of guaranteeing the respect of the desired emissions level, while minimizing fuel consumption and avoiding excessive battery depletion is the target of the corresponding section of the Thesis.
Resumo:
In dieser Arbeit wird ein vergröbertes (engl. coarse-grained, CG) Simulationsmodell für Peptide in wässriger Lösung entwickelt. In einem CG Verfahren reduziert man die Anzahl der Freiheitsgrade des Systems, so dass manrngrössere Systeme auf längeren Zeitskalen untersuchen kann. Die Wechselwirkungspotentiale des CG Modells sind so aufgebaut, dass die Peptid Konformationen eines höher aufgelösten (atomistischen) Modells reproduziert werden.rnIn dieser Arbeit wird der Einfluss unterschiedlicher bindender Wechsel-rnwirkungspotentiale in der CG Simulation untersucht, insbesondere daraufhin,rnin wie weit das Konformationsgleichgewicht der atomistischen Simulation reproduziert werden kann. Im CG Verfahren verliert man per Konstruktionrnmikroskopische strukturelle Details des Peptids, zum Beispiel, Korrelationen zwischen Freiheitsgraden entlang der Peptidkette. In der Dissertationrnwird gezeigt, dass diese “verlorenen” Eigenschaften in einem Rückabbildungsverfahren wiederhergestellt werden können, in dem die atomistischen Freiheitsgrade wieder in die CG-Strukturen eingefügt werden. Dies gelingt, solange die Konformationen des CG Modells grundsätzlich gut mit der atomistischen Ebene übereinstimmen. Die erwähnten Korrelationen spielen einerngrosse Rolle bei der Bildung von Sekundärstrukturen und sind somit vonrnentscheidender Bedeutung für ein realistisches Ensemble von Peptidkonformationen. Es wird gezeigt, dass für eine gute Übereinstimmung zwischen CG und atomistischen Kettenkonformationen spezielle bindende Wechselwirkungen wie zum Beispiel 1-5 Bindungs- und 1,3,5-Winkelpotentiale erforderlich sind. Die intramolekularen Parameter (d.h. Bindungen, Winkel, Torsionen), die für kurze Oligopeptide parametrisiert wurden, sind übertragbarrnauf längere Peptidsequenzen. Allerdings können diese gebundenen Wechselwirkungen nur in Kombination mit solchen nichtbindenden Wechselwirkungspotentialen kombiniert werden, die bei der Parametrisierung verwendet werden, sind also zum Beispiel nicht ohne weiteres mit einem andere Wasser-Modell kombinierbar. Da die Energielandschaft in CG-Simulationen glatter ist als im atomistischen Modell, gibt es eine Beschleunigung in der Dynamik. Diese Beschleunigung ist unterschiedlich für verschiedene dynamische Prozesse, zum Beispiel für verschiedene Arten von Bewegungen (Rotation und Translation). Dies ist ein wichtiger Aspekt bei der Untersuchung der Kinetik von Strukturbildungsprozessen, zum Beispiel Peptid Aggregation.rn