989 resultados para Optically Active Constituents (OACs)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the system oriented analysis, design, modeling, and implementation of active clamp HF link three phase converter. The main advantage of the topology is reduced size, weight, and cost of the isolation transformer. However, violation of basic power conversion rules due to presence of the leakage inductance in the HF transformer causes over voltage stresses across the cycloconverter devices. It makes use of the snubber circuit necessary in such topologies. The conventional RCD snubbers are dissipative in nature and hence inefficient. The efficiency of the system is greatly improved by using regenerative snubber or active clamp circuit. It consists of an active switching device with an anti-parallel diode and one capacitor to absorb the energy stored in the leakage inductance of the isolation transformer and to regenerate the same without affecting circuit performance. The turn on instant and duration of the active device are selected such that it requires simple commutation requirements. The time domain expressions for circuit dynamics, design criteria of the snubber capacitor with two conflicting constrains (over voltage stress across the devices and the resonating current duration), the simulation results based on generalized circuit model and the experimental results based on laboratory prototype are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the transient response of a colloidal bead which is released from different heights and allowed to relax in the potential well of an optical trap. Depending on the initial potential energy, the system's time evolution shows dramatically different behaviors. Starting from the short-time reversible to long-time irreversible transition, a stationary reversible state with zero net dissipation can be achieved as the release point energy is decreased. If the system starts with even lower energy, it progressively extracts useful work from thermal noise and exhibits an anomalous irreversibility. In addition, we have verified the Transient Fluctuation Theorem and the Integrated Transient Fluctuation Theorem even for the non-ergodic descriptions of our system. Copyright (C) EPLA, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dikpati and Choudhuri (1993, 1995) developed a model for the poleward migration of the weak diffuse magnetic field on the Sun's surface. This field was identified with the poloidal component produced by the solar dynamo operating at the base of the convection zone, and its evolution was studied by considering the effects of meridional circulation and turbulent diffusion. The earlier model is extended in this paper by incorporating the flux from, the decay of tilted active regions near the solar surface as an additional source of the poloidal field. This extended model can now explain various low-latitude features in the time-latitude diagram of the weak diffuse fields. These low-latitude features could not be accounted for in the earlier model, which was very successful in modeling the behavior at high latitudes. The time-latitude diagrams show that regions of a particular polarity often have 'tongues' of opposite polarity. Such tongues can be produced in the theoretical model by incorporating fluctuations in the source term arising out of the decaying active regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL), electroluminescence (EL) and photoconductivity (PC) of poly[(2,5-dimethoxy-p-phenylene) vinylene] (DMPPV) of varying conjugation length were studied. Thin film devices of the DMPPV with different conjugation lengths, as the active medium, were prepared. The PL emission spectra revealed the radiative decay of the singlet excitons with peak values corresponding to energies below the absorption onset. The PL. emission spectra of the copolymer films also revealed vibronic features, which get well resolved upon cooling to 80K, The devices exhibit light emitting diode (LED) behavior; the I-V curves and EL spectra are compared in these DMPPV samples having different conjugation lengths. The PC studies reveal subtle features, which can be attributed to the optically generated excitations in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Front-End (AFE) converter operation produces electrically noisy DC bus on common mode basis. This results in higher ground current as compared to three phase diode bridge rectifier. Filter topologies for DC bus have to deal problems with switching frequency and harmonic currents. The proposed filter approach reduces common mode voltage and circulates third harmonic current within the system, resulting in minimal ground current injection. The filtering technique, its constrains and design to attenuate common mode voltage and eliminate lower order harmonics injection to ground is discussed. The experimental results for operation of the converter with both SPWM and CSVPWM are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mean, bipolar active regions are oriented nearly toroidally, according to Hale's polarity law, with a latitude-dependent tilt known as Joy's Law. The tilt angles of individual active regions deviate from this mean behavior and change over time. It has been found that on average the change is toward the mean angle at a rate characteristic of 4.37 days (Howard, 1996). We show that this orientational relaxation is consistent with the standard model of flux tube emergence from a deep dynamo layer. Under this scenario Joy's law results from the Coriolis effect on the rising flux tube (D'Silva and Choudhuri, 1993), and departures from it result from turbulent buffeting of the tubes (Longcope and Fisher, 1996). We show that relaxation toward Joy's angle occurs because the turbulent perturbations relax on shorter time scales than the perturbations from the Coriolis force. The turbulent perturbations relax more rapidly because they are localized to the topmost portion of the convection zone while the Coriolis perturbations are more widely distributed. If a fully-developed active region remains connected to the strong toroidal magnetic field at the base of the convection zone, its tilt will eventually disappear, leaving it aligned perfectly toroidally. On the other hand, if the flux becomes disconnected from the toroidal field the bipole will assume a tilt indicative of the location of disconnection. We compare models which are connected and disconnected from the toroidal field. Only those disconnected at points very deep in the convection zone a-re consistent with observed time scale of orientational relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent work on the physical properties of model fluid membranes in nonequilibrium situations resembling those encountered in the living cell and contrast their properties with those of the more familiar membranes at thermal equilibrium. We survey models for the effect of (i) active pumps and (ii) active fission–fusion processes encountered in intracellular trafficking on the stability and fluctuations of fluid membranes. Our purpose is twofold: to highlight the exciting nonequilibrium phenomena that arise in biological systems, and to show how some crucial features of living systems, namely dissipative energy uptake and directed motion, can fruitfully be incorporated into physical models of biological interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to the lack of atmospheric vertical profile data with sufficient accuracy and vertical resolution, the response of the deep atmosphere to passage of monsoon systems over the Bay of Bengal. had not been satisfactorily elucidated. Under the Indian Climate Research Programme, a special observational programme called 'Bay of Bengal Monsoon Experiment' (BOBMEX), was conducted during July-August 1999. The present study is based on the high-resolution radiosondes launched during BOBMEX in the north Bay. Clear changes in the vertical thermal structure of the atmosphere between active and weak phases of convection have been observed. The atmosphere cooled below 6 km height and became warmer between 6 and 13 km height. The warmest layer was located between 8 and 10 km height, and the coldest layer was found just below 5 km height. The largest fluctuations in the humidity field occurred in the mid-troposphere. The observed changes between active and weak phases of convection are compared with the results from an atmospheric general circulation model, which is similar to that used at the National Centre for Medium Range Weather Forecasting, New Delhi. The model is not able to capture realistically some important features of the temperature and humidity profiles in the lower troposphere and in the boundary layer during the active and weak spells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have imaged the H92alpha and H75alpha radio recombination line (RRL) emissions from the starburst galaxy NGC 253 with a resolution of similar to4 pc. The peak of the RRL emission at both frequencies coincides with the unresolved radio nucleus. Both lines observed toward the nucleus are extremely wide, with FWHMs of similar to200 km s(-1). Modeling the RRL and radio continuum data for the radio nucleus shows that the lines arise in gas whose density is similar to10(4) cm(-3) and mass is a few thousand M., which requires an ionizing flux of (6-20) x 10(51) photons s(-1). We consider a supernova remnant (SNR) expanding in a dense medium, a star cluster, and also an active galactic nucleus (AGN) as potential ionizing sources. Based on dynamical arguments, we rule out an SNR as a viable ionizing source. A star cluster model is considered, and the dynamics of the ionized gas in a stellar-wind driven structure are investigated. Such a model is only consistent with the properties of the ionized gas for a cluster younger than similar to10(5) yr. The existence of such a young cluster at the nucleus seems improbable. The third model assumes the ionizing source to be an AGN at the nucleus. In this model, it is shown that the observed X-ray flux is too weak to account for the required ionizing photon flux. However, the ionization requirement can be explained if the accretion disk is assumed to have a big blue bump in its spectrum. Hence, we favor an AGN at the nucleus as the source responsible for ionizing the observed RRLs. A hybrid model consisting of an inner advection-dominated accretion flow disk and an outer thin disk is suggested, which could explain the radio, UV, and X-ray luminosities of the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence quenching of biologically active carboxamide namely (E)-2-(4-chlorobenzylideneamino)-N-(2-chlorophenyl)-4,5,6,7-tetrahydrobe nzo[b]thiophene-3-carboxamide [ECNCTTC] by aniline and carbon tetrachloride (CCl(4)) quenchers in different solvents using steady state method and time resolved method using only one solvent has been carried out at room temperature to understand the role of quenching mechanisms. The Stern-Volmer plot has been found to be linear for all the solvents studied. The probability of quenching per encounter p (p') was determined in all the solvents and was found to be less than unity. Further, from the studies of rate parameters and life time measurements in n-heptane and cyclohexane with aniline and carbon tetrachloride as quenchers have been shown that, the phenomenon of quenching is generally governed by the well-known Stern-Volmer (S-V) plot. The activation energy E(a) (or E(a)') of quenching was determined using the literature values of activation energy of diffusion E(d) and the experimentally determined values of p (or p'). It has been found that, the activation energy E(a) (E(a)') is greater than the activation energy for diffusion E(d) in all solvents. Hence, from the magnitudes of E(a) (or E(a)') as well as p (or p') infer that, the quenching mechanism is not solely due to the material diffusion, but there is also contribution from the activation energy. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage. Several alkaline earth and transition group metal ions induce high fidelity and promiscuous cleavage or inhibition depending upon their concentration. The metal ions having different ionic radii and co-ordination geometries readily replace each other from the enzyme's active site, revealing its plasticity. Ability of R KpnI to cleave DNA with both alkaline earth and transition group metal ions having varied ionic radii could imply utilization of different catalytic site(s). However, mutation of the invariant His residue of the HNH motif caused abolition of the enzyme activity with all of the cofactors, indicating that the enzyme follows a single metal ion catalytic mechanism for DNA cleavage. Indispensability of His in nucleophile activation together with broad cofactor tolerance of the enzyme indicates electrostatic stabilization function of metal ions during catalysis. Nevertheless, a second metal ion is recruited at higher concentrations to either induce promiscuity or inhibit the DNA cleavage. Regulation of the endonuclease activity and fidelity by a second metal ion binding is a unique feature of R.KpnI among REases and HNH nucleases. The active site plasticity of R.KpnI opens up avenues for redesigning cofactor specificities and generation of mutants specific to a particular metal ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater ecosystems vary in size and composition and contain a wide range of organisms which interact with each other and with the environment. These interactions are between organisms and the environment as nutrient cycling, biomass formation and transfer, maintenance of internal environment and interactions with the external environment. The range of organisms present in aquatic communities decides the generation and transfer function of biomass, which defines and characterises the system. These organisms have distinct roles as they occupy particular trophic levels, forming an interconnected system in a food chain. Availability of resources and competition would primarily determine the balance of individual species within the food web, which in turn influences the variety and proportions of the different organisms, with important implications for the overall functioning of the system. This dynamic and diverse relationship decides the physical, chemical and biological elements across spatial and temporal scales in the aquatic ecosystem, which can be recorded by regular inventorying and monitoring to maintain the integrity and conserve the ecosystem. Regular environmental monitoring, particularly water quality monitoring allows us to detect, assess and manage the overall impacts on the rivers. The appreciation of water quality is in constant flux. Water quality assessments derived through the biotic indices, i.e. assessments based on observations of the resident floral and faunal communities has gained importance in recent years. Biological evaluations provide a description of the water quality that is often not achievable from elemental analyses alone. A biological indicator (or bioindicator) is a taxon or taxa selected based on its sensitivity to a particular attribute, and then assessed to make inferences about that attribute. In other words, they are a substitute for directly measuring abiotic features or other biota. Bioindicators are evaluated through presence or absence, condition, relative abundance, reproductive success, community structure (i.e. composition and diversity), community function (i.e. trophic structure), or any combination thereof.Biological communities reflect the overall ecological integrity by integrating various stresses, thus providing a broad measure of their synergistic impacts. Aquatic communities, both plants and animals, integrate and reflect the effects of chemical and physical disturbances that occur over extended periods of time. Monitoring procedures based on the biota measure the health of a river and the ability of aquatic ecosystems to support life as opposed to simply characterising the chemical and physical components of a particular system. This is the central purpose of assessing the biological condition of aquatic communities of a river.Diatoms (Bacillariophyceae), blue green algae (Cyanophyceae), green algae (Chlorophyceae), and red algae (Rhodphyceae) are the main groups of algae in flowing water. These organisms are widely used as biological indicators of environmental health in the aquatic ecosystem because algae occupy the most basic level in the transfer of energy through natural aquatic systems. The distribution of algae in an aquatic ecosystem is directly related to the fundamental factors such as physical, chemical and biological constituents. Soft algae (all the algal groups except diatoms) have also been used as indicators of biological integrity, but they may have less efficiency than diatoms in this respect due to their highly variable morphology. The diatoms (Bacillariophyceae) comprise a ubiquitous, highly successful and distinctive group of unicellular algae with the most obvious distinguishing characteristic feature being siliceous cell walls (frustules). The photosynthetic organisms living within its photic zone are responsible for about one-half of global primary productivity. The most successful organisms are thought to be photosynthetic prokaryotes (cyanobacteria and prochlorophytes) and a class of eukaryotic unicellular algae known as diatoms. Diatoms are likely to have arisen around 240 million years ago following an endosymbiotic event between a red eukaryotic alga and a heterotrophic flagellate related to the Oomycetes.The importance of algae to riverine ecology is easily appreciated when one considers that they are primary producers that convert inorganic nutrients into biologically active organic compounds while providing physical habitat for other organisms. As primary producers, algae transform solar energy into food from which many invertebrates obtain their energy. Algae also transform inorganic nutrients, such as atmospheric nitrogen into organic forms such as ammonia and amino acids that can be used by other organisms. Algae stabilises the substrate and creates mats that form structural habitats for fish and invertebrates. Algae are a source of organic matter and provide habitat for other organisms such as non-photosynthetic bacteria, protists, invertebrates, and fish. Algae's crucial role in stream ecosystems and their excellent indicator properties make them an important component of environmental studies to assess the effects of human activities on stream health. Diatoms are used as biological indicators for a number of reasons: 1. They occur in all types of aquatic ecosystems. 2. They collectively show a broad range of tolerance along a gradient of aquatic productivity, individual species have specific water chemistry requirements. 3. They have one of the shortest generation times of all biological indicators (~2 weeks). They reproduce and respond rapidly to environmental change and provide early measures of both pollution impacts and habitat restoration. 4. It takes two to three weeks before changes are reflected to a measurable extent in the assemblage composition.