893 resultados para Optical Wave-guides
Resumo:
We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states, we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber cavity experimental setup in which the theoretical predictions can be observed and studied.
Resumo:
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.
Resumo:
A fiber mode-lock laser allows generation of the optical rogue wave (ORW) at different time scales. The criteria for distinguishing between them is a comparison of the event lifetime with the main characteristic time of the system. The characteristic time can be estimated from the decay of an autocorrelation function (AF). Thus, in comparison with AF characteristic time, fast optical rogue wave (FORW) events have duration less than the AF decay time and it appeared due to pulse-pulse interaction and nonlinear pulses dynamics. While slow optical rogue wave (SORW) have a duration much more longer than the decay time of the AF which it papered due to hopping between different attractors. Switching between regimes can be managed by change the artificial birefringence that induced in a laser cavity. For understanding the role playing by the periodical amplification and the resonator, we have performed an unidirectional fiber laser experiments without a saturable absorber. This laser experiment allowed to generate of most of the RW patterns which were either observed experimentally or predicted theoretically. In this way, we have observed the generation of an FORW along with SORW under similar conditions. Most of the patterns were found to be mutually exclusive which means that only one RW mechanism was realized in each regime of generation.
Resumo:
Optical nanofibres (ONFs) are very thin optical waveguides with sub-wavelength diameters. ONFs have very high evanescent fields and the guided light is confined strongly in the transverse direction. These fibres can be used to achieve strong light-matter interactions. Atoms around the waist of an ONF can be probed by collecting the atomic fluorescence coupling or by measuring the transmission (or the polarisation) of the probe beam sent through it. This thesis presents experiments using ONFs for probing and manipulating laser-cooled 87Rb atoms. As an initial experiment, a single mode ONF was integrated into a magneto-optical trap (MOT) and used for measuring the characteristics of the MOT, such as the loading time and the average temperature of the atom cloud. The effect of a near-resonant probe beam on the local temperature of the cold atoms has been studied. Next, the ONF was used for manipulating the atoms in the evanescent fields region in order to generate nonlinear optical effects. Four-wave mixing, ac Stark effect (Autler-Townes splitting) and electromagnetically induced transparency have been observed at unprecedented ultralow power levels. In another experiment, a few-mode ONF, supporting only the fundamental mode and the first higher order mode group, has been used for studying cold atoms. A higher pumping rate of the atomic fluorescence into the higher order fibreguided modes and more interactions with the surrounding atoms for higher order mode evanescent light, when compared to signals for the fundamental mode, have been identified. The results obtained in the thesis are particularly for a fundamental understanding of light-atom interactions when atoms are near a dielectric surface and also for the development of fibre-based quantum information technologies. Atoms coupled to ONFs could be used for preparing intrinsically fibre-coupled quantum nodes for quantum computing and the studies presented here are significant for a detailed understanding of such a system.
Resumo:
R-matrix with time-dependence theory is applied to electron-impact ionisation processes for He in the S-wave model. Cross sections for electron-impact excitation, ionisation and ionisation with excitation for impact energies between 25 and 225 eV are in excellent agreement with benchmark cross sections. Ultra-fast dynamics induced by a scattering event is observed through time-dependent signatures associated with autoionisation from doubly excited states. Further insight into dynamics can be obtained through examination of the spin components of the time-dependent wavefunction.
Resumo:
Résumé : Malgré le nombre croissant de capteurs dans les domaines de la chimie et la biologie, il reste encore à étudier en profondeur la complexité des interactions entre les différentes molécules présentes lors d’une détection à l’interface solide-liquide. Dans ce cadre, il est de tout intérêt de croiser différentes méthodes de détection afin d’obtenir des informations complémentaires. Le principal objectif de cette étude est de dimensionner, fabriquer et caractériser un détecteur optique intégré sur verre basé sur la résonance plasmonique de surface, destiné à terme à être combiné avec d’autres techniques de détection, dont un microcalorimètre. La résonance plasmonique de surface est une technique reconnue pour sa sensibilité adaptée à la détection de surface, qui a l’avantage d’être sans marquage et permet de fournir un suivi en temps réel de la cinétique d’une réaction. L’avantage principal de ce capteur est qu’il a été dimensionné pour une large gamme d’indice de réfraction de l’analyte, allant de 1,33 à 1,48. Ces valeurs correspondent à la plupart des entités biologiques associées à leurs couches d’accroche dont les matrices de polymères, présentés dans ce travail. Étant donné que beaucoup d’études biologiques nécessitent la comparaison de la mesure à une référence ou à une autre mesure, le second objectif du projet est d’étudier le potentiel du système SPR intégré sur verre pour la détection multi-analyte. Les trois premiers chapitres se concentrent sur l’objectif principal du projet. Le dimensionnement du dispositif est ainsi présenté, basé sur deux modélisations différentes, associées à plusieurs outils de calcul analytique et numérique. La première modélisation, basée sur l’approximation des interactions faibles, permet d’obtenir la plupart des informations nécessaires au dimensionnement du dispositif. La seconde modélisation, sans approximation, permet de valider le premier modèle approché et de compléter et affiner le dimensionnement. Le procédé de fabrication de la puce optique sur verre est ensuite décrit, ainsi que les instruments et protocoles de caractérisation. Un dispositif est obtenu présentant des sensibilités volumiques entre 1000 nm/RIU et 6000 nm/RIU suivant l’indice de réfraction de l’analyte. L’intégration 3D du guide grâce à son enterrage sélectif dans le verre confère au dispositif une grande compacité, le rendant adapté à la cointégration avec un microcalorimètre en particulier. Le dernier chapitre de la thèse présente l’étude de plusieurs techniques de multiplexage spectral adaptées à un système SPR intégré, exploitant en particulier la technologie sur verre. L’objectif est de fournir au moins deux détections simultanées. Dans ce cadre, plusieurs solutions sont proposées et les dispositifs associés sont dimensionnés, fabriqués et testés.
Resumo:
The most promising concept for low frequency (millihertz to hertz) gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques to derive a realistic position noise budget. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus one can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory's sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission proposed to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. Future versions of the web application will incorporate the frequency dependence of different noise sources and include a more detailed model of the observatory's residual acceleration noise.
Resumo:
We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Hollow, cylindrical, prismatic light guides (CPLGs) are optical components that, using total internal reflection (TIR), are able to transmit high-diameter light beams in daylight and artificial lighting applications without relevant losses. It is necessary to study the prism defects of their surfaces to quantify the behavior of these optical components. In this Letter, we analyze a CPLG made of a transparent dielectric material. Scanning electron microscopy (SEM) and the topographic optical profilometry by absorption in fluids (TOPAF) imaging technique are conducted to determine if there are defects in the corners of the prisms. A model for light guide transmittance that is dependent on prism defects is proposed. Finally, a simulation and an experimental study are carried out to check the validity of the proposed model.
Resumo:
EChO (Exoplanet atmospheres Characterization Observatory), a proposal for exoplanets exploration space mission, is considered the next step for planetary atmospheres characterization. It would be a dedicated observatory to uncover a large selected sample of planets spanning a wide range of masses (from gas giants to super-Earths) and orbital temperatures (from hot to habitable). All targets move around stars of spectral types F, G, K, and M. EChO would provide an unprecedented view of the atmospheres of planets in the solar neighbourhood. The consortium formed by various institutions of different countries proposed as ESA M3 an integrated spectrometer payload for EChO covering the wavelength interval 0.4 to 16 µm. This instrument is subdivided into 4 channels: a visible channel, which includes a fine guidance system (FGS) and a VIS spectrometer, a near infrared channel (SWiR), a middle infrared channel (MWiR), and a long wave infrared module (LWiR). In addition, it contains a common set of optics spectrally dividing the wavelength coverage and injecting the combined light of parent stars and their exoplanets into the different channels. The proposed payload meets all of the key performance requirements detailed in the ESA call for proposals as well as all scientific goals. EChO payload is based on different spectrometers covering the spectral range mentioned above. Among them, SWiR spectrometer would work from 2.45 microns to 5.45 microns. In this paper, the optical and mechanical designs of the SWiR channel instrument are reported on.