893 resultados para Operating room technicians.
Resumo:
The electroformation of silicon oxide was performed in two room temperature ionic liquids (RTIL), 1-butyl-3-methyl-imidazolium bis(trifluoromethane sulfonyl) imide (BMITFSI) and N-n-butyl-N-methylpiperidinium bis(trifluoromethane sulfonyl) imide (BMPTFSI). This phenomenon was studied by electrochemical techniques and it was observed that the oxide growth follows a high-field mechanism. X-ray Photoelectron Spectroscopy experiments have shown that a non-stoichiometric oxide film was formed, related to the low water content present in both RTILs (< 30 ppm). The roughness values obtained by using AFM technique of the silicon surface after etching with HF was 1.5 nm (RMS). The electrochemical impedance spectroscopy at low frequencies range was interpreted as a resistance in parallel with a CPE element, the capacitance obtained was associated with the dielectric nature of the oxide formed and the resistance was interpreted considering the chemical dissolution of the oxide by the presence of the TFSI anion. The CPE element was associated with the surface roughness and the very thin oxide film obtained. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.
Resumo:
A fast, high-yielding synthesis of diaryl ethers with use of mild and metal-free conditions has been developed. The scope includes bulky ortho-substituted diaryl ethers, which are difficult to obtain by metal-catalyzed protocols. Halo-substituents, racemization-prone amino acid derivatives, and heteroaromatics are also tolerated. The methodology is expected to be of high utility in the synthesis of complex molecules and in the pharmaceutical industry.
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
This illustrates a typical lecture room at the New York Trade School taken during a class. Black and white photograph.
Resumo:
Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.
Resumo:
Este trabalho tem como objetivo fornecer uma análise detalhada do cenário da sustentabilidade ambiental e iniciativas de responsabilidade social corporativa nas empresas que operam no mercado de bens de consumo brasileiro. Para alcançar este objetivo as dez maiores empresas do mercado-alvo presente no Brasil foram analisadas por meio da classificação das suas iniciativas em três perspectivas amplas. Com esta classificação o cenário do mercado pode ser visto. As perspectivas utilizadas para a elaboração do trabalho são: (1) iniciativa ambiental ou social; (2) o foco interno ou externo e (3) a marca ou o custo como motivador. Depois de classificar todas as iniciativas, foi possível ver que as empresas similares, que operam em mercados semelhantes, têm estratégias que são muito parecidos entre si. Além disso, ficou claro que a estratégia de negócios da empresa influencia as suas políticas ambientais e sociais, em particular os objetivos que estas políticas procuram obter.Embora este trabalho apresente um panorama abrangente do setor de bens de consumo em relação a políticas de comportamento responsável das empresas, ele tem algumas limitações. A limitação mais significativa diz respeito a metodologia. As iniciativas foram avaliadas pela quantidade e a abrangência dos benefícios do impacto positivo não foram avaliados, impossibilitando assim a comparação do tamanho do impacto de cada empresa. Uma vez que pode haver um projeto de uma empresa que tem maior impacto do que vários outros feitos por alguma outra empresa. A metodologia foi baseada em clusters de categorias, no entanto, as iniciativas não são completamente uma coisa ou outra, ou seja, uma iniciativa pode ter diferentes impactos, drivers ou foco, nesses casos, os aspectos mais relevantes foram a escolhidos para classificá-los.
Resumo:
Although the existence of spinoff equity gains is well documented, their source remains controversial. Arnong many potential causes, the literature suggests that spinoff equity gains could arise from expected tax benefits, expected takeover premia, operating performance improvement or from refocusing benefits. This paper investigates the link between spinoff announcement and post completion equity gains and post spinoff operating performance changes, takeover activity and refocusing benefits. The results indicate that spinoff announcement retums reflect anticipated takeover premiums as well as expected operating performance gains and refocusing benefits unrelated to operating performance. However, only the parent's operating performance gains are anticipated at the spinoff announcement. We find that post spinoff equity gains are driven mostly by operating performance changes for both parents and spun off subsidiaries. Takeover activity and unrelatedness of business lines between parent and subsidiary expIain littIe of post spinoff equity gains. OveralI, the data suggests that spinoffs equity gains mostly reflect anticipated real economic gains in terms of improved operating performance, and to a lesser extent takeover premium and refocusing benefit.
Resumo:
This report tells a story which started as an idea that came to us to fight the battle-cry feeling commonly known as stress and anxiety. Before creating the solution of the idea, we first need to understand the feelings underneath and its effects on our well-being. Throughout the course of our lives, we experience states of weakness and fear. These feelings can arise, for instance, while we are in an emergency room. Needless to say, how much it would have imaginable effects on children, who are unfamiliar to such environments. We ran through a serious of scenarios to find the most suitable solution, among them the study of interaction with positive expressions by Dr. Baldwin, proved to be a valued resource. It was reduced due to its length and to be suitable to our public audience. The game was then created in order to reduce or even eliminate the stress and anxiety of children. Since the game was initially released, some modifications had been made but the original idea - interaction with positive expressions – remained. When the time came, we asked children to play one of the two versions of the game while waiting in the emergency room. This not only created a diversion for them but also a learning experience as it displayed some hospital equipment. The difference between the two versions is that one provides expressions, while the other does not. After all our hard work, we felt rewarded because the project proved its worth and we would see that in the expressions on children’s faces while they played. Most importantly, their anxiety level numbers were significantly reduced during that short period of time.
Resumo:
The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.
Resumo:
Doped lanthanum chromite ( LaCrO3 ) has been the most common material used as interconnect in solid oxide fuel cells for high temperature ( SOFC-HT ) that enabling the stack of SOFCs. The reduction of the operating temperature, to around 800 º C, of solid oxide fuel cells enabled the use of metallic interconnects as an alternative to ceramic LaCrO3, From the practical point of view, to be a strong candidate for interconnect the material must have good physical and mechanical properties such as resistance to oxidizing and reducing environments, easy manufacture and appropriate thermo-mechanical properties. Thus, a study on the physic-mechanical interconnects La0,8Sr0,2Cr0,92Co0,08O3 ceramics for SOFC -AT obtained by the method of combustion , as well as thermo-mechanical properties of metallic interconnects (AISI 444) covered with La0,8Ca0,2CrO3 by deposition technique by spray-pyrolysis fuel cells for intermediate temperature (IT-SOFCs). The La0,8Sr0,2Cr0,92Co0,08O3 was characterized by X -ray diffraction(XRD) , density and porosity , Vickers hardness (HV) , the flexural strength at room temperature and 900 °C and scanning electron microscopy (SEM). The X -ray diffraction confirmed the phase formation and LaCrO3 and CoCr2O4, in order 6 GPa hardness and mechanical strength at room temperature was 62 MPa ceramic Interconnector. The coated metal interconnects La0,8Ca0,2CrO3 passed the identification by XRD after deposition of the film after the oxidation test. The oxidative behavior showed increased resistance to oxidation of the metal substrate covered by La0,8Ca0,2CrO3 In flexural strength of the coated metal substrate, it was noticed only in the increased room temperature. The a SEM analysis proved the formation of Cr2O3 and (Cr,Mn)3O4 layers on metal substrate and confirmed the stability of the ceramic La0,8 Ca0,2CrO3 film after oxidative test
Resumo:
Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite
Resumo:
Three ranges of increasing temperatures (35-43, 37-45, 39-47degreesC) were sequentially applied to a five-stage system continuously operated with cell recycling so that differences of 2degreesC (between one reactor to the next) and 8degreesC (between the first reactor at the highest temperature and the fifth at the lowest temperature) were kept among the reactors for each temperature range. The entire system was fed through the first reactor. The lowest values of biomass and viability were obtained for reactor R-3 located in the middle of the system. The highest yield of biomass was obtained in the effluent when the system was operated at 35-43degreesC. This nonconventional system was set up to simulate the local fluctuations in temperature and nutrient concentrations that occur in different regions of the medium in an industrial bioreactor for fuel ethanol production mainly in tropical climates. Minimized cell death and continuous sugar utilization were observed at temperatures normally considered too high for Saccharomyces cerevisiae fermentations.
Resumo:
To simplify computer management, various administration systems based on wired connections adopt advanced techniques to manage software configuration. Nevertheless, the strong relation between hardware and software makes for an individualism of that management, besides penalizing computational mobility and ubiquity. All these issues lead to degradation of scalability, flexibility and the facility to install and maintain distributed applications. This article presents an environment for centralized wireless communication network management, named WSE-OS (Wireless Sharing Environment - Operating Systems): a model based on Virtual Desktop Infrastructure (VDI) which associates virtualization techniques and safe remote access systems to create a distributed architecture as a base for a managing system. WSE-OS is capable of accomplishing the replication of operating system images using wireless communication network, besides offering abstraction of hardware to its clients, making the management more flexible and independent of wired connections. Results obtained from this work indicate that WSE-OS allows disseminating, through a single software configuration, the execution of data related to operating system images in client computers. WSE-OS can also be used as a management tool for operating systems in a wireless network.