930 resultados para Object-oriented Design
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
A spreadsheet usually starts as a simple and singleuser software artifact, but, as frequent as in other software systems, quickly evolves into a complex system developed by many actors. Often, different users work on different aspects of the same spreadsheet: while a secretary may be only involved in adding plain data to the spreadsheet, an accountant may define new business rules, while an engineer may need to adapt the spreadsheet content so it can be used by other software systems.Unfortunately,spreadsheetsystemsdonotoffermodular mechanisms, and as a consequence, some of the previous tasks may be defined by adding intrusive “code” to the spreadsheet. In this paper we go through the design and implementation of an aspect-oriented language for spreadsheets so that users can work on different aspects of a spreadsheet in a modular way. For example, aspects can be defined in order to introduce new business rules to an existing spreadsheet, or to manipulate the spreadsheet data to be ported to another system. Aspects are defined as aspect-oriented program specifications that are dynamically woven into the underlying spreadsheet by an aspect weaver. In this aspect-oriented style of spreadsheet development, differentusers develop,orreuse,aspects withoutaddingintrusive code to the original spreadsheet. Such code is added/executed by the spreadsheet weaving mechanism proposed in this paper.
Resumo:
Diplomityössä luodaan viitekehys tuotetiedonhallintajärjestelmän esisuunnittelua varten. Siinä on kolme ulottuvuutta: lisäarvontuotto-, toiminnallisuus- ja ohjelmistoulottuvuus. Viitekehys auttaa- tunnistamaan lisäarvontuottokomponentit, joihin voidaan vaikuttaa tiettyjen ohjelmistoluokkien tarjoamilla tuotetiedonhallintatoiminnallisuuksilla. Viitekehyksen järjestelmäsuunnittelullista näkökulmaa hyödynnetään tutkittavissa yritystapauksissa perustuen laskentamatriisin muotoon mallinnettuihin ulottuvuuksien välisiin suhteisiin. Matriisiin syötetään lisäarvontuotto- ja toiminnallisuuskomponenttien saamat tärkeydet kohdeyrityksessä suoritetussa haastattelututkimuksessa. Matriisin tuotos on tietyn ohjelmiston soveltuvuus kyseisen yrityksen tapauksessa. Soveltuvuus on joukko tunnuslukuja, jotka analysoidaan tulostenkäsittelyvaiheessa. Soveltuvuustulokset avustavat kohdeyritystä sen valitessa lähestymistapaansa tuotetiedonhallintaan - ja kuvaavat esisuunnitellun tuotetiedonhallintajärjestelmän. Viitekehyksen rakentaminen vaatii perinpohjaisen lähestymistavan merkityksellisten lisäarvontuotto- ja toiminnallisuuskomponenttien sekä ohjelmistoluokkien määrittämiseen. Määritystyö perustuu työssä yksityiskohtaisesti laadittujen menetelmien ja komponenttiryhmitysten hyödyntämiselle. Kunkin alueen analysointi mahdollistaa viitekehyksen ja laskentamatriisin rakentamisen yhdenmukaisten määritysten perusteella. Viitekehykselle on ominaista sen muunneltavuus. Nykymuodossaan se soveltuu elektroniikka- ja high-tech yrityksille. Viitekehystä voidaan hyödyntää myös muilla toimialoilla muokkaamalla lisäarvontuottokomponentteja kunkin toimialan intressien mukaisesti. Vastaavasti analysoitava ohjelmisto voidaan valita tapauskohtaisesti. Laskentamatriisi on kuitenkin ensin päivitettävä valitun ohjelmiston kyvykkyyksillä, minkä jälkeen viitekehys voi tuottaa soveltuvuustuloksia kyseiseen yritystapaukseen perustuen
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
Performance and manufacturability are two important issues that must be taken into account during MEMS design. Existing MEMS design models or systems follow a process-driven design paradigm, that is, design starts from the specification of process sequence or the customization of foundry-ready process template. There has been essentially no methodology or model that supports generic, high-level design synthesis for MEMS conceptual design. As a result, there lacks a basis for specifying the initial process sequences. To address this problem, this paper proposes a performance-driven, microfabrication-oriented methodology for MEMS conceptual design. A unified behaviour representation method is proposed which incorporates information of both physical interactions and chemical/biological/other reactions. Based on this method, a behavioural process based design synthesis model is proposed, which exploits multidisciplinary phenomena for design solutions, including both the structural components and their configuration for the MEMS device, as well as the necessary substances for the chemical/biological/other reactions. The model supports both forward and backward synthetic search for suitable phenomena. To ensure manufacturability, a strategy of using microfabrication-oriented phenomena as design knowledge is proposed, where the phenomena are developed from existing MEMS devices that have associated MEMS-specific microfabrication processes or foundry-ready process templates. To test the applicability of the proposed methodology, the paper also studies microfluidic device design and uses a micro-pump design for the case study.
Resumo:
Current methods and techniques used in designing organisational performance measurement systems do not consider the multiple aspects of business processes or the semantics of data generated during the lifecycle of a product. In this paper, we propose an organisational performance measurement systems design model that is based on the semantics of an organisation, business process and products lifecycle. Organisational performance measurement is examined from academic and practice disciplines. The multi-discipline approach is used as a research tool to explore the weaknesses of current models that are used to design organisational performance measurement systems. This helped in identifying the gaps in research and practice concerning the issues and challenges in designing information systems for measuring the performance of an organisation. The knowledge sources investigated include on-going and completed research project reports; scientific and management literature; and practitioners’ magazines.
Resumo:
João Bernardo de Sena Esteves Falcão e Cunha
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
Autism has been associated with enhanced local processing on visual tasks. Originally, this was based on findings that individuals with autism exhibited peak performance on the block design test (BDT) from the Wechsler Intelligence Scales. In autism, the neurofunctional correlates of local bias on this test have not yet been established, although there is evidence of alterations in the early visual cortex. Functional MRI was used to analyze hemodynamic responses in the striate and extrastriate visual cortex during BDT performance and a color counting control task in subjects with autism compared to healthy controls. In autism, BDT processing was accompanied by low blood oxygenation level-dependent signal changes in the right ventral quadrant of V2. Findings indicate that, in autism, locally oriented processing of the BDT is associated with altered responses of angle and grating-selective neurons, that contribute to shape representation, figure-ground, and gestalt organization. The findings favor a low-level explanation of BDT performance in autism.
Resumo:
Three important goals in describing software design patterns are: generality, precision, and understandability. To address these goals, this paper presents an integrated approach to specifying patterns using Object-Z and UML. To achieve the generality goal, we adopt a role-based metamodeling approach to define patterns. With this approach, each pattern is defined as a pattern role model. To achieve precision, we formalize role concepts using Object-Z (a role metamodel) and use these concepts to define patterns (pattern role models). To achieve understandability, we represent the role metamodel and pattern role models visually using UML. Our pattern role models provide a precise basis for pattern-based model transformations or refactoring approaches.