977 resultados para OD-21 undifferentiated pulp cells
Resumo:
The aim of this study was to evaluate the putative influence of diabetes without metabolic control in the loss of tooth structure as well as histological changes in dentin and pulp tissue in rats. Diabetes was induced in Wistar rats (n=25) by intravenous administration of alloxan (42mg/kg). Diabetic and non-diabetic control rats were evaluated at 1, 3, 6, 9 and 12 months of follow-up. In order to evaluate the presence and progression of dental caries and periapical lesions, hemimandibles were removed and submitted to radiographical, histological, and morphometrical procedures. Dental caries were detected after radiographical and histological evaluations in diabetic group from the third month of diabetes onset, increasing gradually in frequency and severity in periods. Diabetic rats dental pulps also presented significant reduction in volume density of collagen fibers and fibroblasts at third month, parallel with a trend towards the increase in inflammatory cells volume density. Diabetic rats presented a generalized pulp tissue necrosis after 6 months of diabetes induction. Moreover, periapical lesions were not detected in control group, while these lesions were observed in all rats after 3, 6, 9, and 12 months of diabetes induction. Uncontrolled diabetes seems to trigger the loss of tooth structure, associated to histological dental changes and mediates its evolution to progressive severe pulp and periapical lesions in rats. Therefore, diabetes may be considered a very important risk factor regarding alterations in dental pulp, development of dental caries, and periapical lesions.
Resumo:
This study investigated the transdentinal cytotoxicity of glutahaldehyde-containing solutions/materials on odontoblast-like cells. Dentin discs were adapted to artificial pulp chambers. MDPC-23 cells were seeded on the pulpal side of the discs and the occlusal surface was treated with the following solutions: water, 2% glutaraldehyde (GA), 5% GA, 10% GA, Gluma Comfort Bond+Desensitizer (GCB+De) or Gluma Desensitizer (GDe). Cell viability and morphology were assessed by the Alamar Blue assay and SEM. The eluates were collected and applied on cells seeded in 24-well plates. After 7 or 14 days the total protein (TP) production, alkaline phosphatase activity (ALP) and deposition of mineralized nodules (MN) were evaluated. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (p<0.05). GA solutions were not cytotoxic against MDPC-23. GCB+De (85.1%) and GDe (77.2%) reduced cell viability as well as TP production and ALP activity at both periods. After 14 days, GCB+De and GDe groups produced less MN. Affected MDPC-23 presented deformation of the cytoskeleton and reduction of cellular projections. The treatment with 2.5%, 5% and 10% GA was not harmful to odontoblast-like cells. Conversely, when GA was combined with other components like HEMA, the final material became cytotoxic. Glutaraldehyde has been used to decrease dentin hypersensitivity. This substance is also capable of preventing resin-dentin bond degradation by cross-linking collagen and MMPs. This study showed that GA might be safe when applied on acid etched dentin. However, when combined with HEMA the product becomes cytotoxic.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cultivation of sisal, a plant with a short growth cycle, is highly productive in Brazil. This work is part of extensive research in which sisal is valued. In these studies, sisal fibers are used in the preparation of bio-based composites and in the derivatization of the pulp, including posterior preparation of films. This study aimed to examine the use of sisal pulp in the production of bioethanol, which can potentially be a high efficiency process because of the cellulose content of this fiber. A previous paper addressed the hydrolysis of sisal pulp using sulfuric acid as a catalyst. In the present study, the influence of the mercerization process on the acid hydrolysis of sisal pulp was evaluated. Mercerization was achieved in a 20% wt NaOH solution, and the cellulosic pulp was suspended and vigorously mixed for 1, 2 and 3 h, at 50 A degrees C. The previously characterized mercerized pulps were hydrolyzed (100 A degrees C, 30% H2SO4, v/v), and the results are compared with those obtained for unmercerized pulp (described in a companion paper). The starting sample was characterized by viscometry, alpha-cellulose content, crystallinity index and scanning electron microscopy. During the reactions, aliquots were withdrawn, and the liquor was analyzed by HPLC. The residual pulps (non-hydrolyzed) were also characterized by the techniques described for the initial sample. The results revealed that pretreatment decreases the polyoses content as well as causes a decrease of up to 23% in the crystallinity and up to 21% in the average molar mass of cellulose after 3 h of mercerization. The mercerization process proved to be very important to achieve the final target. Under the same reaction conditions (30% and 100 A degrees C, 6 h), the hydrolysis of mercerized pulp generated yields of up to 50% more glucose. The results of this paper will be compared with the results of subsequent studies obtained using other acids, and enzymes, as catalysts.
Resumo:
Ethanol extracts of powdered genipap (Genipa americana L), umbu (Spondia tuberosa A.) and siriguela (Spondia purpurea L) prepared from separate pulp, seeds and peel were investigated for their (i) antioxidant capacity, which was evaluated by various known methods; (ii) acetylcholinesterase (AChE) inhibitory activity; and (iii) cytotoxic effect on corneal epithelial cells of sheep. The highest values of total phenolic content were obtained with peel and seed extracts. Siriguela and umbu (seeds and peel) extracts displayed the highest antioxidant activities. Lipid peroxidation assays using mimetic biomembranes and mouse liver homogenates indicated that genipap pulp is a promising antioxidant. The investigation of phenols and organic acid contents revealed the presence of quercetin, citric and quinic acids, chlorogenic acid derivatives, among others, in several extracts, with the highest amount found in siriguela seeds. Genipap pulp and siriguela seed ethanol extracts presented an AChE inhibition zone similar to that of the positive control, carbachol. AChE inhibition assay with chlorogenic acid, one of the main constituents of siriguela seeds, revealed that this acid showed activity similar to that of the control physostigmine. These data suggest that these extracts are potentially important antioxidant supplements for the everyday human diet, pharmaceutical and cosmetic industries. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
ARHGAP21 is a 217 kDa RhoGAP protein shown to modulate cell migration through the control of Cdc42 and FAK activities. In the present work a 250 kDa-ARHGAP21 was identified by mass spectrometry. This modified form is differentially expressed among cell lines and human primary cells. Co-immunoprecipitations and in vitro SUMOylation confirmed ARHGAP21 specific modification by SUMO2/3 and mapped the SUMOylation site to ARHGAP21 lysine K1443. Immunofluorescence staining revealed that ARHGAP21 co-localizes with SUMO2/3 in the cytoplasm and membrane compartments. Interestingly, our results suggest that ARHGAP21 SUMOylation may be related to cell proliferation. Therefore, SUMOylation of ARHGAP21 may represent a way of guiding its function. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Bone marrow is a source of stem cells for greater and easier access, which is widely studied as a provider of hematopoietic and mesenchymal cells for various purposes, mainly therapeutic by the advances in research involving cell therapy. The swine is an animal species commonly used in the pursuit of development of experimental models. Thus, this study aimed to standardize protocol for collection and separation of bone marrow in swines, since this species is widely used as experimental models for various diseases. Twelve animals were used, which underwent bone marrow puncture with access from the iliac crest and cell separation by density gradient followed by a viability test with an average of 98% of viable cells. Given our results, we can ensure the swine as an excellent model for obtaining and isolation of mononuclear cells from bone marrow, stimulating several studies addressing the field of cell therapy. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
OBJECTIVES: FTY720 modulates CD4(+)T cells by the augmentation of regulatory T cell activity, secretion of suppressive cytokines and suppression of IL-17 secretion by Th17 cells. To further understand the process of graft rejection/acceptance, we evaluated skin allograft survival and associated events after FTY720 treatment. METHODS: F1 mice (C57BL/6xBALB/c) and C57BL/6 mice were used as donors for and recipients of skin transplantation, respectively. The recipients were transplanted and either not treated or treated with FTY720 by gavage for 21 days to evaluate the allograft survival. In another set of experiments, the immunological evaluation was performed five days post-transplantation. The spleens, axillary lymph nodes and skin allografts of the recipient mice were harvested for phenotyping (flow cytometry), gene expression (real-time PCR) and cytokine (Bio-Plex) analysis. RESULTS: The FTY720 treatment significantly increased skin allograft survival, reduced the number of cells in the lymph nodes and decreased the percentage of Tregs at this site in the C57BL/6 recipients. Moreover, the treatment reduced the number of graft-infiltrating cells and the percentage of CD4(+) graft-infiltrating cells. The cytokine analysis (splenocytes) showed decreased levels of IL-10, IL-6 and IL-17 in the FTY720-treated mice. We also observed a decrease in the IL-10, IL-6 and IL-23 mRNA levels, as well as an increase in the IL-27 mRNA levels, in the splenocytes of the treated group. The FTY720-treated mice exhibited increased mRNA levels of IL-10, IL-27 and IL-23 in the skin graft. CONCLUSIONS: Our results demonstrated prolonged but not indefinite skin allograft survival by FTY720 treatment. This finding indicates that the drug did not prevent the imbalance between Tr1 and Th17 cells in the graft that led to rejection.
Resumo:
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an "immune exhaustion'', with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28(-)CD57(+)CD8(+) T cells between the groups. However, the frequency of Tim-3(+)CD8(+) and Tim-3(+)CD4(+) exhausted T cells, but not PD-1(+) T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1(+)CD8(+) T cells were directly associated with T cell immune activation in children. The frequency of Tim-3(+)CD8(+) T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.
Resumo:
The study of spermatogonial stem cells (SSCs) provides a model to better understand adult stem cell biology. Besides the biomedical potential to perform studies of infertility in many species, SSCs hold a promising application at animal transgenesis. Because stem cells are thought to be associated with basement membranes, expression of alpha-6 integrin has been investigated as a marker of type A spermatogonial cells, which are considered SSCs because of their undifferentiated status and self-renewal ability. In this manner, the aim of this study was to isolate type A SSCs from adult bulls by a two-step enzymatic procedure followed by a discontinuous Percoll density gradient purification and verify the expression of alpha-6 integrin by flow cytometry and real-time RT-PCR before and after Percoll purification. Spermatogonial cells were successfully obtained using the two-step enzymatic digestion. An average of 1 x 10(5) viable cells per gram of testis was isolated. However, the discontinuous Percoll did not purify isolated cells regarding alpha-6 integrin expression. Flow cytometry analysis demonstrated no differences in the alpha-6 integrin expression between cell samples before and after Percoll purification (p = 0.5636). The same was observed in the real-time PCR analysis (p > 0.05). In addition to alpha-6 integrin, the expression of GFR alpha-1 and PGP9.5, known bovine SSCs markers, was detected in all samples studied. Considering that Percoll can reduce cell viability, it is possible to conclude that Percoll density gradient is not suitable to purify bovine SSC, according to alpha-6 integrin expression.
Resumo:
Amniotic fluid (AF) was described as a potential source of mesenchymal stem cells (MSCs) for biomedicine purposes. Therefore, evaluation of alternative cryoprotectants and freezing protocols capable to maintain the viability and stemness of these cells after cooling is still needed. AF stem cells (AFSCs) were tested for different freezing methods and cryoprotectants. Cell viability, gene expression, surface markers, and plasticity were evaluated after thawing. AFSCs expressed undifferentiated genes Oct4 and Nanog; presented typical markers (CD29, CD44, CD90, and CD105) and were able to differentiate into mesenchymal lineages. All tested cryoprotectants preserved the features of AFSCs however, variations in cell viability were observed. In this concern, dimethyl sulfoxide (Me2SO) showed the best results. The freezing protocols tested did not promote significant changes in the AFSCs viability. Time programmed and nonprogrammed freezing methods could be used for successful AFSCs cryopreservation for 6 months. Although tested cryoprotectants maintained undifferentiated gene expression, typical markers, and plasticity of AFSCs, only Me2SO and glycerol presented workable viability ratios.
Resumo:
Background: Prognosis of prostate cancer (PCa) is based mainly in histological aspects together with PSA serum levels that not always reflect the real aggressive potential of the neoplasia. The micro RNA (miRNA) mir-21 has been shown to regulate invasiveness in cancer through translational repression of the Metaloproteinase (MMP) inhibitor RECK. Our aim is to investigate the levels of expression of RECK and miR-21 in PCa comparing with classical prognostic factors and disease outcome and also test if RECK is a target of miR-21 in in vitro study using PCa cell line. Materials and methods: To determine if RECK is a target of miR-21 in prostate cancer we performed an in vitro assay with PCa cell line DU-145 transfected with pre-miR-21 and anti-miR-21. To determine miR-21 and RECK expression levels in PCa samples we performed quantitative real-time polymerase chain reaction (qRT-PCR). Results: The in vitro assays showed a decrease in expression levels of RECK after transfection with pre-miR-21, and an increase of MMP9 that is regulated by RECK compared to PCa cells treated with anti-miR-21. We defined three profiles to compare the prognostic factors. The first was characterized by miR-21 and RECK underexpression (N = 25) the second was characterized by miR-21 overexpression and RECK underexpression (N = 12), and the third was characterized by miR-21 underexpression and RECK overexpression (N = 16). From men who presented the second profile (miR-21 overexpression and RECK underexpression) 91.7% were staged pT3. For the other two groups 48.0%, and 46.7% of patients were staged pT3 (p = 0.025). Conclusions: Our results demonstrate RECK as a target of miR-21. We believe that miR-21 may be important in PCa progression through its regulation of RECK, a known regulator of tumor cell invasion.
Resumo:
Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specific corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specific mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most efficient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specific and unique siRNA sequences (Stealth RNai (TM)). Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (172 bp in exon 2; and 108 bp in exon 6; NM003401) genes were chosen to generate dsRNA for subsequent "Dicing" to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80 degrees C. Alternatively, chemically synthesized Stealth siRNAs were designed and generated to match two very specific gene sequence regions for each target gene of interest (Ku70 and Xrcc4). HCT116 cells were plated at 30% confluence in 24- or 6-well culture plates. The next day, cells were transfected by lipofection with either Diced or Stealth siRNAs for Ku70 or Xrcc4, in duplicate, at various doses, with blank and sham transfections used as controls. Cells were harvested at 0, 24, 48, 72 and 96 h post-transfection for protein determination. The knockdown of specific targeted gene products was quantified by Western blot using GAPDH as control. Transfection of gene-specific siRNA to either Ku70 or Xrcc4 with both Diced and Stealth siRNAs resulted in a down regulation of the targeted proteins to approximately 10 to 20% of control levels 48 h after transfection, with recovery to pre-treatment levels by 96 h. Discussion: By transfecting cells with Diced or chemically synthesized Stealth siRNAs, Ku70 and Xrcc4, two highly expressed proteins in cells, were effectively attenuated, demonstrating the great potential for the use of both siRNA production strategies as tools to perform loss of function experiments in mammalian cells. In fact, down-regulation of Ku70 and Xrcc4 has been shown to reduce the activity of the non-homologous end joining DNA pathway, a very desirable approach for the use of homologous recombination technology for gene targeting or knockout studies. Stealth RNAi (TM) was developed to achieve high specificity and greater stability when compared with mixtures of enzymatically-produced (Diced) siRNA fragments. In this study, both siRNA approaches inhibited the expression of Ku70 and Xrcc4 gene products, with no detectable toxic effects to the cells in culture. However, similar knockdown effects using Diced siRNAs were only attained at concentrations 10-fold higher than with Stealth siRNAs. The application of RNAi technology will expand and continue to provide new insights into gene regulation and as potential applications for new therapies, transgenic animal production and basic research.