957 resultados para Novel organic reactions
Resumo:
The speciation of strongly chelated iron during the 22-day course of an iron enrichment experiment in the Atlantic sector of the Southern Ocean deviates strongly from ambient natural waters. Three iron additions (ferrous sulfate solution) were conducted, resulting in elevated dissolved iron concentrations (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) and significant Fe(II) levels (Croot, P.L., Laan, P., Nishioka, J., Strass, V., Cisewski, B., Boye, M., Timmermans, K.R., Bellerby, R.G., Goldson, L., Nightingale, P., de Baar, H.J.W., 2005, Spatial and Temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Marine Chemistry, doi:10.1016/j.marchem.2004.06.041). Repeated vertical profiles for dissolved (filtrate < 0.2 µm) Fe(III)-binding ligands indicated a production of chelators in the upper water column induced by iron fertilizations. Abiotic processes (chemical reactions) and an inductive biologically mediated mechanism were the likely sources of the dissolved ligands which existed either as inorganic amorphous phases and/or as strong organic chelators. Discrete analysis on ultra-filtered samples (< 200 kDa) suggested that the produced ligands would be principally colloidal in size (> 200 kDa-< 0.2 µm), as opposed to the soluble fraction (< 200 kDa) which dominated prior to the iron infusions. Yet these colloidal ligands would exist in a more transient nature than soluble ligands which may have a longer residence time. The production of dissolved Fe-chelators was generally smaller than the overall increase in dissolved iron in the surface infused mixed layer, leaving a fraction (about 13-40%) of dissolved Fe not bound by these dissolved Fe-chelators. It is suggested that this fraction would be inorganic colloids. The unexpected persistence of such high inorganic colloids concentrations above inorganic Fe-solubility limits illustrates the peculiar features of the chemical iron cycling in these waters. Obviously, the artificial about hundred-fold increase of overall Fe levels by addition of dissolved inorganic Fe(II) ions yields a major disruption of the natural physical-chemical abundances and reactivity of Fe in seawater. Hence the ensuing responses of the plankton ecosystem, while in itself significant, are not necessarily representative for a natural enrichment, for example by dry or wet deposition of aeolian dust. Ultimately, the temporal changes of the Fe(III)-binding ligand and iron concentrations were dominated by the mixing events that occurred during EISENEX, with storms leading to more than an order of magnitude dilution of the dissolved ligands and iron concentrations. This had strongest impact on the colloidal size class (> 200 kDa-< 0.2 µm) where a dramatic decrease of both the colloidal ligand and the colloidal iron levels (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) was observed.
Resumo:
Rates of organic matter (OM) transformation within the production-destruction cycle of the White Sea were estimated on the basis of measured activity values of redox enzymes of the electron transport system and of hydrolytic enzymes (phosphatase and protease). It was found that OM oxidation processes were the most intensive in the Kandalaksha Bay, while minimum oxidation rates were characteristic of central parts of the Dvina and Onega bays. It was revealed that the highest rates of phosphate mineralization were characteristic of the central part of the sea and near-mouth areas of the Onega and Kandalaksha bays, with the lowest rates in the Dvina Bay. During the period of intense primary production when resources of inorganic phosphorus were practically depleted, high rates of phosphate regeneration were observed. It was shown that populations of micro- and zooplankton in the White Sea were characterized by low activation energies of the principal metabolism reactions (3-6 kcal/mol), which allowed these populations to provide exchange intensity comparable to that of inhabitants of warm waters during all the seasons.
Resumo:
Notable compositional changes of organic matter are observed below the silica transition zone in thermally immature sediments. The increase of bitumen ratio, and hopane and sterane isomerization parameters indicate an acceleration of the kinetics of the chemical reactions which transform the organic matter. This phenomenon is probably due to the numerous mineral and textural changes induced by the transformation of amorphous biogenic silica into crystalline authigenic silica.
Resumo:
Vol. 1, 1921, vol. 2, 1920.
Resumo:
A novel nanocomposite of iron oxide and silicate, prepared through a reaction between a solution of iron salt and a dispersion of Laponite clay, was used as a catalyst for the photoassisted Fenton degradation of azo-dye Orange II. This catalyst is much cheaper than the Nafion-based catalysts, and our results illustrate that it can significantly accelerate the degradation of Orange II under the irradiation of UV light (lambda = 254 nm). An advantage of the catalyst is its long-term stability that was confirmed through using the catalyst for multiple runs in the degradation of Orange II. The effects of the H2O2 molar concentration, solution pH, wavelength and power of the LTV light, catalyst loading, and initial Orange II concentration on the degradation of Orange 11 were studied in detail. In addition, it was also found that discoloration of Orange 11 undergoes a faster kinetics than mineralization of Orange II and 75% total organic carbons of 0.1 mM Orange II can be eliminated after 90 min in the presence of 1.0 g of Fe-nanocomposite/L, 4.8 mM H2O2, and 1 x 8W UVC.
Resumo:
A novel laponite RD clay-based Fe nanocomposite (Fe-Lap-RD) has been successfully synthesized through a reaction between a solution of iron salt and an aqueous dispersion of laponite RD clay. The X-ray diffraction (XRD) results reveal that the Fe-Lap-RD mainly consists of Fe2O3 (maghemite) and Fe2Si4O10(OH)2 (iron silicate hydroxide), which have tetragonal and monoclinic structures, respectively, and has a high specific surface area as well as a high pore volume. The photo-catalytic activity of the Fe-Lap-RD was examined in the photo-assisted degradation of an organic azo dye Orange II. It was found that the mineralization of Orange 11 undergoes a slower kinetics than discoloration, and 70% total organic carbon (TOC) of 0.2 mM Orange 11 can be removed in 90 min, implying that the Fe-Lap-RD exhibited a high photo-catalytic activity in the presence of H2O2 and UV light (254 nm) in the photo-assisted degradation of Orange II. In addition, our experiments also illustrate that the Fe-Lap-RD has a long-term stability but is of low cost. This study illustrates the possibility of photo-assisted degradation of organic compounds without the requirements to remove the Fe ions after reaction. Two possible catalytic reaction mechanisms are also proposed. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A high yielding synthesis of the pentacyclic diene-dione 1 has enabled investigation of its reactivity as a double dienophile in Diels-Alder [4+2] cycloadditions with isobenzofuran, leading to novel and highly symmetrical three-sided cavitands 3 and 4.
Resumo:
The 2,3,4-tri-toluenesulfonate ester derivatives of the methyl pyranosides of L-arabinose, D-ribose, D-lyxose, and D-xylose have been prepared, and their substitution reactions with various nucleophiles have been examined. For arabinose, xylose, and ribose, highly regioselective monosubstitutions were observed with benzoate, nitrite, and azide anions. These reactions have led to short and simple routes from D-xylose to L-arabinose derivatives, from L-arabinose to D-xylose derivatives, and from D-ribose to L-lyxose derivatives. The tritosylate derived from methyl alpha-D-lyxopyranoside was unreactive toward nucleophilic substitution reactions, giving instead a dihydropyran product arising from an initial E2 elimination reaction of the 2-tosylate.
Resumo:
[GRAPHICS] The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus are 4,6,8,10,16-penta- and 4,6,8,10,16,18-hexamethyldocosanes, I and 2, respectively. Stereoisomers of 2,4,6,8-tetramethylundecanal of established relative stereochemistry were derived from 2,4,6-trimethylphenol and were then coupled with appropriate methyl-substituted phosphoranes 62 and 25 to furnish alkenes, which on reduction provided diastereomers of I and 2, respectively. Capillary gas chromatography, mass spectrometry, and high resolution C-13 NMR spectroscopy confirmed 1 as either 84a or 84b and 2 as either 15a or 15b. The novelty of these structures and their relative stereochemistry is briefly related to polyketide assembly.
Resumo:
Biological and chemical pro ling of an Australian strain of the fungus Aspergillus unilateralis (MST-F8675), isolated from a soil sample collected near Mount Isa, Queensland, revealed a complex array of metabolites displaying broad chemotherapeutic properties. Noteworthy among these metabolites were a unique series of highly modified dipeptides aspergillazines A-E, incorporating a selection of unprecedented and yet biosynthetically related heterocyclic systems. Co-occurring with the aspergillazines was the recently described marine-derived fungal metabolite trichodermamide A (cf. penicillazine), whereas re-fermentation of A. unilateralis in NaCl (1%) enriched media resulted in co-production of the only other known example of this structure class, the marine-derived fungal metabolite trichodermamide B. Further investigation of A. unilateralis returned the known terrestrial fungal metabolite viridicatumtoxin as the cytotoxic and antibacterial principle, together with E-2-decenedioic acid, ferulic acid, (7E,7'E)-5,5'-diferulic acid and (7E,7'E)-8,5'-diferulic acid. The aromatic diacids have previously been reported from the chemical and enzymatic (esterase) treatment of plant cell wall material, with their isolation from A. unilateralis being their first apparent reported occurrence as natural products. Structures for all metabolites were determined by detailed spectroscopic analysis and, where appropriate, comparison to literature data and/or authentic samples.
Resumo:
Upper Devonian rocks of the Iberian Pyrite Belt (IPB) in southwest Spain, comprising the Phyllite-Quartzite Group (PQ) and the lower part of the overlying Volcano-Sedimentary Complex (VSC), contain a diversity of terrestrial and marine palynomorphs (miospores and organic-walled microphytoplankton, respectively), which constitute the basis of this biostratigraphically oriented research project. Part One of the report has previously detailed the miospore content of the constituent 117 palyniferous samples. In the present paper (i.e., the concluding Part Two), the organic-walled microphytoplankton (acritarchs and prasinophyte phycomata) are systematically described and illustrated, and their occurrence in the study material is fully documented. The acritarchs are represented by 23 species (including one species complex) allocated among 14 genera (one of which, Dupliciradiatum, is newly established), together with a very rare and novel category (informally termed Gen. nov. A). The following new acritarch species are formally instituted: Dupliciradiatum crassum (type species), D. tenue, Histopalla languida, and Winwaloeusia repagulata. Five genera allied with the prasinophycean algae are identified; these accommodate a total of 15 species of which two - Cymatiosphaera tenuimembrana and Maranhites multioculus - are formally proposed as new. In addition, representatives of the prasinophyte genera Leiosphaeridia and Tasmanites are recorded but are not discriminated at species level. The microphytoplankton suite is clearly consonant, from previously published occurrences in other regions, with a Late Devonian dating. However, most of the species are known to be relatively long ranging through (and in some cases beyond) that epoch and hence are not amenable to detailed biozonal subdivision of the IPB succession. Moreover, the distribution of the species therein tends to be erratic in comparison with the more consistently occurring miospores, possibly due to stress factors induced by fluctuating conditions in the IPBs Upper Devonian marine environment. By contrast, the land-derived (miospore) assemblages are readily applicable in a blostratigraphic context: they can be correlated precisely with the Devonian miospore biozonation scheme for Western Europe. In those terms, the sampled PQ strata are assignable to the Diducites versabilis-Grandispora cornuta (VCo) Biozone of late Famennian age; while the samples from the anoxic sequence at the base of the VSC belong to the Retispora lepidophyta-Verrucosisporites nitidus (LN) Biozone (latest Famennian = latest Devonian). The biochronostratigraphic data, in conjunction with the findings from earlier IPB studies, imply two appreciable palynostratigraphic breaks within the PQ. These are representative, respectively, of the lower Frasnian-middle Famennian interval and of part of the Strunian/upper Famennian. Speculation currently remains as to whether the inferred gaps are more apparent than real; i.e., whether one or both represent actual hiatuses in IPB sedimentation or are simply a manifestation of hitherto unsampled and/or non-palyniferous PQ strata.
Resumo:
Combinatorial chemistry has become an invaluable tool in medicinal chemistry for the identification of new drug leads. For example, libraries of predetermined sequences and head-to-tail cyclized peptides are routinely synthesized in our laboratory using the IRORI approach. Such libraries are used as molecular toolkits that enable the development of pharmacophores that define activity and specificity at receptor targets. These libraries can be quite large and difficult to handle, due to physical and chemical constraints imposed by their size. Therefore, smaller sub-libraries are often targeted for synthesis. The number of coupling reactions required can be greatly reduced if the peptides having common amino acids are grouped into the same sub-library (batching). This paper describes a schedule optimizer to minimize the number of coupling reactions by rotating and aligning sequences while simultaneously batching. The gradient descent method thereby reduces the number of coupling reactions required for synthesizing cyclic peptide libraries. We show that the algorithm results in a 75% reduction in the number of coupling reactions for a typical cyclic peptide library.
Resumo:
A series of highly functionalized cyclic enones were obtained from Mannich, Morita-Baylis-Hiliman and elimination reaction with cyclic enones.
Resumo:
The isokibdelones are an unprecedented family of polyketides produced by an Australian isolate of a rare actinomycete, Kibdelosporangium sp. The structures of the isokibdelones were assigned by spectroscopic analysis and chemical interconversion. A proposed biosynthesis requires a novel molecular twist that generates an unprecedented heterocyclic system and differentiates the isokibdelones from their kibdelone co-metabolites. SAR analysis on the isokibdelones further defines the anticancer pharmacophore of these novel polyketides.
Resumo:
This work has demonstrated that for the first time a single RAFT agent (i. e., difunctional) can be used in conjunction with a radical initiator to obtain a desired M-n and PDI with controlled rates of polymerization. Simulations were used not only to verify the model but also to provide us with a predictive tool to generate other MWDs. It was also shown that all the MWDs prepared in this work could be translated to higher molecular weights through chain extension experiments with little or no compromise in the control of end group functionality. The ratio of monofunctional to difunctional SdC(CH2Ph)S- end groups, XPX and XP (where X) S=C(CH2Ph) S-), can be controlled by simply changing the concentration of initiator, AIBN. Importantly, the amount of dead polymer is extremely low and fulfils the criterion as suggested by Szwarc (Nature 1956) that to meet living requirements nonfunctional polymeric species formed by side reactions in the process should be undetectable by analytical techniques. In addition, this novel methodology will allow the synthesis of AB, ABA, and statistical multiblock copolymers with predetermined ratios to be produced in a one-pot reaction.