Measurements of organic complexation of iron during the CARUSO-EISENEX experiment


Autoria(s): Boyé, Marie; Nishioka, Jun; Croot, Peter L; Laan, Patrick; Timmermans, Klaas R; de Baar, Hein JW
Cobertura

MEDIAN LATITUDE: -48.198478 * MEDIAN LONGITUDE: 20.879530 * SOUTH-BOUND LATITUDE: -49.294000 * WEST-BOUND LONGITUDE: 20.029167 * NORTH-BOUND LATITUDE: -47.819500 * EAST-BOUND LONGITUDE: 21.126500 * DATE/TIME START: 2000-11-02T02:51:00 * DATE/TIME END: 2000-11-29T08:58:00 * MINIMUM DEPTH, water: 20 m * MAXIMUM DEPTH, water: 1000 m

Data(s)

28/09/2005

Resumo

The speciation of strongly chelated iron during the 22-day course of an iron enrichment experiment in the Atlantic sector of the Southern Ocean deviates strongly from ambient natural waters. Three iron additions (ferrous sulfate solution) were conducted, resulting in elevated dissolved iron concentrations (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) and significant Fe(II) levels (Croot, P.L., Laan, P., Nishioka, J., Strass, V., Cisewski, B., Boye, M., Timmermans, K.R., Bellerby, R.G., Goldson, L., Nightingale, P., de Baar, H.J.W., 2005, Spatial and Temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Marine Chemistry, doi:10.1016/j.marchem.2004.06.041). Repeated vertical profiles for dissolved (filtrate < 0.2 µm) Fe(III)-binding ligands indicated a production of chelators in the upper water column induced by iron fertilizations. Abiotic processes (chemical reactions) and an inductive biologically mediated mechanism were the likely sources of the dissolved ligands which existed either as inorganic amorphous phases and/or as strong organic chelators. Discrete analysis on ultra-filtered samples (< 200 kDa) suggested that the produced ligands would be principally colloidal in size (> 200 kDa-< 0.2 µm), as opposed to the soluble fraction (< 200 kDa) which dominated prior to the iron infusions. Yet these colloidal ligands would exist in a more transient nature than soluble ligands which may have a longer residence time. The production of dissolved Fe-chelators was generally smaller than the overall increase in dissolved iron in the surface infused mixed layer, leaving a fraction (about 13-40%) of dissolved Fe not bound by these dissolved Fe-chelators. It is suggested that this fraction would be inorganic colloids. The unexpected persistence of such high inorganic colloids concentrations above inorganic Fe-solubility limits illustrates the peculiar features of the chemical iron cycling in these waters. Obviously, the artificial about hundred-fold increase of overall Fe levels by addition of dissolved inorganic Fe(II) ions yields a major disruption of the natural physical-chemical abundances and reactivity of Fe in seawater. Hence the ensuing responses of the plankton ecosystem, while in itself significant, are not necessarily representative for a natural enrichment, for example by dry or wet deposition of aeolian dust. Ultimately, the temporal changes of the Fe(III)-binding ligand and iron concentrations were dominated by the mixing events that occurred during EISENEX, with storms leading to more than an order of magnitude dilution of the dissolved ligands and iron concentrations. This had strongest impact on the colloidal size class (> 200 kDa-< 0.2 µm) where a dramatic decrease of both the colloidal ligand and the colloidal iron levels (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) was observed.

Formato

text/tab-separated-values, 477 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.770166

doi:10.1594/PANGAEA.770166

Idioma(s)

en

Publicador

PANGAEA

Relação

Method for the determination of the organic speciation of iron (URI: hdl:10013/epic.30803.d001)

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Boyé, Marie; Nishioka, Jun; Croot, Peter L; Laan, Patrick; Timmermans, Klaas R; de Baar, Hein JW (2005): Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Marine Chemistry, 96(3-4), 257-271, doi:10.1016/j.marchem.2005.02.002

Palavras-Chave #ANT-XVIII/2; Date/Time of event; DEPTH, water; EisenEx; Elevation of event; European Iron Enrichment Experiment in the Southern Ocean; Event label; GOFLO; Go-Flo bottles; Iron, colloidal; Iron, dissolved; Iron, dissolved, conditional complex stability; Iron, dissolved, inorganic; Iron, dissolved organic/dissolved inorganic ratio; Iron, soluble; Iron, soluble, conditional complex stability; Iron-binding ligand, dissolved; Latitude of event; Longitude of event; Polarstern; PS58/007-6; PS58/009-7; PS58/011-7; PS58/014-7; PS58/038-6; PS58/041-3; PS58/045-3; PS58/046-2; PS58/048-2; PS58/049-4; PS58/061-2; PS58/088-8; PS58/091-2; PS58/092-2; PS58/107-8; PS58 EISENEX; South Atlantic
Tipo

Dataset