991 resultados para NO3--N


Relevância:

10.00% 10.00%

Publicador:

Resumo:

表层雪是联系大气成分与冰芯记录的重要纽带,是研究成冰作用过程中化学组成变化的起点.为配合天山乌鲁木齐河源1号冰川成冰作用过程中化学组成变化的研究,对1号冰川积累区(海拔4130 m)一个完整年度的表层雪样品进行了低分子有机酸和无机阴离子含量的分析.结果显示:表层雪中低分子有机酸主要有HCOO-、CH3COO-、C2H5COO-和(COO)22-,无机阴离子主要有F-、Cl-、NO2-、NO3-、SO42-和PO43-.除(COO)22-外,大部分高浓度的有机酸…

Relevância:

10.00% 10.00%

Publicador:

Resumo:

地下水污染影响碳的生物地球化学循环,碳的演化也能够反映地下水的污染状况。对贵阳城区地下水的水化学、溶解无机碳含量及其碳同位素进行了分析。研究结果表明,地下水化学以SO4·HCO3-Ca·Mg型和HCO3·Ca·Mg型为主,化学组分分析结果表明,水化学特征主要受岩性控制。地下水中溶解无机碳表现形式主要为HCO3^-,丰水期由于稀释作用其含量减少。而丰水期δ^13CDIC较枯水期偏负,生物成因无机碳占比重大。结合碳同位素和NO3^-等人为活动输入物质的负相关性尝试对城区地下水污染分区,结论为贵阳市区中部、东北部以及西郊农业区地下水受污染较为严重。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

贵州红枫湖10月叶绿素a(chla)和NO3^-含量均比7月明显降低。利用氮同位素等数据对此进行了研究,结果表明,含量的降低是由不同的生物地球化学作用引起的。chla含量的降低主要是水体中有机质降解(硝化)所致,而NO3^- 含量的降低则是缺氧季节湖泊沉积物表层反硝化作用的结果。缺氧季节表层水体仍然能发生较强烈的硝化作用。硝化作用和反硝化作用分别发生在热分层湖泊的上层和沉积物表层。反硝化作用不仅消耗大量的NO3^-,而且还造成了一定量的有机质降解(有机碳作为电子受体)。据估算,在红枫湖后五测点和大坝测点,总有机碳在沉积成岩前分别降解了78%和68%。其中由硝化作用引起的总有机质降解量分别为35.8%和25.9%,而反硝化作用则分别为13.4%和9.2%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

有机氮含量和C:N比的变化可能是有机质降解和富营养化水体升高的共同结果。红枫湖接受较多的工业和农业废水,其NO3-的δ15N平均值分别为+15.68‰和+8.11‰。废水氮的输入改变了湖泊DIN的氮同位素组成。由于水生生物在同化吸收水体DIN的时候倾向于优先吸收14N,因此产生的生物体δ15N值低于湖水DIN的δ15N值,但这种变化较工业废水输入引起的δ15N值升高意义可能较小。故该湖泊现代沉积有机物δ15N值的变化可以认为主要是工业和农业废水排放量变化的结果。从上述沉积有机物δ15N值的变化可知,红枫湖

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用室内试验方法,研究了溶液介质条件对Fe^3+共沉淀去除Cu^2+的影响。试验结果表明,pH是影响Fe^3+共沉淀去除Cu^2+的主要因素之一,其去除率随pH的增加而增加,并且其固液分配系数Kd的对数值与pH之间显示出较好的线性关系;天然水体中溶解的电解质离子及无机和有机配位体对Cu^2+的去除均产生很大影响,Cu^2+的去除率随加入的NaCl和NaClO4浓度的增加而降低,而随Ca(NO3)2和Mg(NO3)2浓度的增加而增加,除磷酸盐的增强作用外,硫酸钠、碳酸氢钠、甘氨酸、草酸钠、柠檬酸钠以及十二烷基苯磺酸钠的加入则不同程度地减弱了Cu^2+的去除;与Cu^2+共存的等量竞争阳离子Pb^2+、Zn^2+和Cd^2+也同样减弱了Fe^3+对Cu^2+的去除。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对贵阳地区22个雨水样品的化学组成和Sr同位素的研究表明,贵阳地区大部分雨水样品的pH值小于5.6(pH=4.53).雨水中Ca^2+是最主要的阳离子,平均值为57μmol·l^-1(12-164μmol·l^-1),占阳离子组成的64%-87%;Mg^2+是次要的阳离子,平均值为13μmol·l^-1(5—4μmol·l^-1),Ca^2+和Mg^2+之和占了阳离子组成的78%-96%;K^+平均值为11μmol·l^-1(2—44μmol·l^-1);Na^+最少,其平均值为4μmol·l^-1(1—8μmol·l^-1).SO4^2-是最主要的阴离子,平均值为941μmol·l^-1(34—279μmol·l^-1),占阴离子组成的28%-94%;NO3^-是次要的阴离子,平均值为48μmol·l^-1(1-252μmol·l^-1),SO4^2-和NO3^-是决定雨水酸度最主要的离子,SO4^2=和NO3^-之和占阴离子组成的77%-99%;Cl^-最少,平均值为20μmol·l^1(1—128μmol·l^-1).贵阳地区雨水中Sr的浓度为0.02-O.33μmol·l^-1,^87Sr/^86Sr比值较小(0.707934-0.709080),非海盐来源的^87Sr/^86Sr比值为0.707820-0.709078.元素比值及Sr同位素组成辨识出贵阳地区雨水溶质主要来源于人为活动,岩石/土壤化学风化次之,海相输入很小或可以忽略不计.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对2004年大气降水样品监测资料的综合分析和研究表明,金华市降水样品pH值的分布范围在3.64~6.76之间,降水的酸雨率为79.3%。SO4^2-和NO3^-是降水中主要的阴离子,分别占降水中阴离子总量的66.1%和21.7%。NH4^+和Ca^2+是降水中含量最高的阳离子,分别占阴离子总量的56.6%和33.4%。降水中这些离子的浓度水平一般比世界上其它地方高,但大大低于国内的北方地区。由于降水中缺乏足够的中和物质,大约76%的降水酸度被NH4^+、Ca^2+和K^+等碱性成分中和。陆源型离子Ca^2+、Mg^2+和K^+以及海盐性离子Na^+和Cl^-之间存在明显的相关关系,另外Ca^2+和SO4^2-、Mg^2+和SO4^2-、Mg^2+和NO3^-以及Mg^2+和Cl^-之间也可以观察到比较好的相关关系。土壤和海水的富集系数表明,研究区域的Ca^2+和K+主要来源于岩石/土壤风化,SO4^2-和NO3^-主要归因于人为活动的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

全球变化的研究发现:19世纪以来全球平均气温大约上升了0.6℃,并预计在21世纪会升高更多。温室效应的直接结果是导致全球地面增温,温度的升高会增加下垫面的蒸发量。根据全球水平衡原理,蒸发量应该与降水量相等,因而降水量也会相应增加。气候变化的情景模式研究表明,世界各地雨量变异大,在高纬度地区,包括北欧地区,降水会增加。 流域是水生系统的一个重要的汞和甲基汞的输入源。欧洲淡水系统中,鱼体汞含量过高的湖泊主要局限于北方的高纬度森林地区。在斯堪的纳维亚半岛,就有上万湖泊中的鱼体汞含量超过了健康食用标准0.5 mg/kg。水生系统甲基汞输入源包括:水体或沉积物通过甲基化形成甲基汞,通过大气干、湿沉降输入的甲基汞和陆地生态系统的地表径流输入的甲基汞。 本研究的主要目标是搞清楚未来气候变化引起的大气降水量的增加对北方高纬度森林流域土壤中汞的迁移和形态转化有何影响。未来大气降水量的增加可能会增强森林地区流域土壤中汞的迁移,进而对水生系统的汞循环产生影响。一方面,如果地下水水位上涨,当水流过富含有机质结合含汞土壤层时,将会增加土壤中汞和甲基汞的迁移性,由此而导致流域向河流、湖泊等水生系统中汞输出通量的增加。另一方面,氧化还原电位改变、DOC和营养物质的释放会加剧汞在土壤中的释放过程,并且可能会促进汞的形态转化,可能增加毒性较强的甲基汞的产量,最终导致甲基汞从土壤向水生系统的输出通量的增加。 本研究选择瑞典西海岸花园湖(Gårdsjön)的G1流域作为研究对象,在流域内进行人工模拟增加降雨试验,模拟未来气候变化降水量增加的情景,观测流域地表径流中汞和甲基汞的变化。并在流域内选择四个点(1×1m²),进行汞同位素加入示踪试验。测定土壤剖面甲基汞和总汞及其同位素组成,来分析汞的迁移和形态转化。主要研究结果如下: 1. 通过对G1流域土壤中甲基汞分布的调查,发现甲基汞含量范围为0.020-3.1ng/g,甲基汞含量与TOC含量具有正相关的关系,表明土壤甲基汞的迁移受TOC迁移的影响。估算G1流域的甲基汞储库通量为123g/km2,G1流域甲基汞储库容为0.65g。 2. 通过甲基汞含量和甲基汞储库在土壤剖面的分布,可以看出表层腐殖质层甲基汞浓度最高,甲基汞最富集,而在较深的土壤层位甲基汞储库容量最大,表明甲基汞具有向下迁移的趋势。 3. 根据总汞同位素组成结果,汞同位素(198Hg(NO3)2)加入土壤中后,202Hg/198Hg比值迅速下降,然后随时间推移而上升,表明加入土壤中的汞与土壤中原始汞形态不同,具有不同的迁移方式,且加入土壤中二价汞的迁移性比土壤中的原始汞更强。计算表明,外界加入的汞,将有50-60%长期滞留在土壤中。 4. 根据甲基汞的同位素组成结果,Wet点的新加入的198Hg甲基汞分数要大于其它三点,表明湿润土壤中汞甲基化速率要快于较干燥的土壤中。另外,Wet点的甲基汞分数比以前无人工模拟增加降雨的同位素示踪结果高很多,表明降水量增加会导致汞的甲基化作用在土壤中的形态转化过程中占主导地位,最终导致甲基汞产率的提高。 5. 人工模拟增加降雨试验进行后,地表径流中总汞的浓度没有发生变化,而甲基汞的浓度增大了很多,从0.03ng/L增大到了1ng/L以上,表明降水的增加可以促进土壤中汞的甲基化作用。 6. 地表径流向流域外总汞和甲基汞的输出量的计算显示,受人工模拟增加降雨的影响,流域地表径流量也会增加,最终年地表径流中总汞和甲基汞的输出通量都变大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究区域降水样品pH值的分布范围为3.64-7.20,pH年均值为4.45。SO4、NO3、NH4、Ca、H是降水中主要的阴、阳离子。降水中SO4对降水酸度的贡献逐渐降低,而NO3的贡献则显著增加。SO4、NH4、Ca、H、NO3的沉降通量相对较大,其它离子则相对较小,同时降水离子成分沉降通量的季节变化非常明显。SO4和NO3、Ca和Mg以及Na和Cl表现出较好的相关关系,另外Ca和SO4、Mg和SO4以及Mg和NO3等酸、碱性离子之间也存在较好的相关性,但H与其它离子间并没有表现出明显的相关关系。降水中SO4、NH4、NO3和F主要来自人为活动的影响,Ca、k和Mg主要来自土壤、沙尘等地壳来源,Na、Cl属于典型的海盐性成分。 浙江中部地区大气降水硫同位素δ34S值的变化范围为+0.53‰-+14.23‰,平均值+5.04‰,区域内各地大气降水硫同位素组成基本一致。大气SO2的δ34S值变化范围在+0.95‰-+7.50‰之间,年均值为+4.73‰,气溶胶δ34S值变化范围则在+6.39‰-+9.83‰之间,年均值为+8.09‰。降水和大气SO2的δ34S值存在冬季高夏季低的季节性变化特征,同位素平衡分馏引起的温度效应和夏季生物成因硫的大量释放是造成季节性变化的主要控制因素。降水中人为来源硫的相对贡献约为53%-91%,年平均为73%,生物成因硫的相对贡献约为8%-44%,年平均为26%。远距离传输硫是研究区域降水中另一个非常重要的硫源,其相对贡献约为27%-44%。大气SO2氧化反应中多相氧化处于相对重要的地位,均相氧化在氧化反应机制中也有其不可低估的作用。研究区域大气环境的相对湿度对大气SO2的氧化机制有着重要的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

地下水数值模拟技术已成为评估人类活动对地下水质和量的影响、评价地下水资源、预测地下水污染发展趋势等的最主要的方法和手段。喀斯特含水层由于含水介质和地下水流场的非均质性和各向异性,对其进行地下水流的数值模拟一直是水文地质学界的难题。 遵义市地处我国西南喀斯特发育区,为贵州省第二大工业城市,属重度缺水地区,地下水资源的开发利用极大缓解了区内的缺水危机。但长期以来,由于对地下水资源的开发利用缺乏合理的统筹规划和强有力的管理,引发了一些环境地质问题,如地下水降落漏斗、岩溶塌陷、地下水质恶化等。因此选择遵义市进行地下水流和污染物运移数值模拟研究具有理论和实际意义。 通过ArcGIS平台建立了研究区的水文地质信息数据库,对研究区地下水的水位动态以及水化学特征做了简单分析。概要总结和阐述了高桥-河溪坝块段的自然地理、地质概况和水文地质条件,建立了水文地质概念模型;在水文地质概念模型的基础上,利用Groundwater Vistas软件建立了枯水期和丰水期的二维非均质各向异性稳定流模型,三维有限差分地下水流模拟程序MODFLOW用于模拟地下水水流,三维溶质运移模块MT3DMS用于模拟污染物在对流弥散情况下的迁移。根据分析和模拟结果可以得出如下几点结论: 1、基岩裂隙水水位峰值滞后大气降水峰值2~3个月,属渐峰型动态;岩溶水水位、地下河出口和泉流量变化步调与降水强度一致,对降水响应敏感。 2、对NH4+、NO3-、NO2-、SO42-、Mn五种组分含量进行了时空分析,结果表明地下水污染物的含量可能受人为活动输入物质的不均匀性和降雨等各方面因素控制,各组分每年的污染面积不一致,没有明显的规律性;受污染的一般是岩溶水,尤其是在石灰岩溶洞、地下河强烈发育而三废排放量大的居民集中地区面积较大。 3、为了有效地进行地下水资源管理,论文对高桥-河溪坝岩溶含水系统进行了一定的概化,将岩溶含水介质近似作为等价多孔介质(Equivalent Porous Media, EPM)模型来进行研究,采用MODFLOW的六个子程序模拟含水层系统的源汇项:降水子程序包RCH模拟降水入渗量、井流子程序包WEL模拟抽水量、通用水头子程序包GHB模拟侧向补给/排泄量、排水沟渠子程序包DRN模拟地下河出口流量、河流子程序包RIV模拟河流与地下水的交换量和已知水头边界子程序包CHD。从水位观测点和地下水位等势面两者结合来校正模型,结果表明能够达到相应国家标准规定的要求。因此EPM模型是可以适用于我国西南喀斯特地区的地下水流模拟的。 4、通过稳定流模型识别了枯水期和丰水期的渗透系数。在高桥和茅草铺附近渗透系数较高,枯水期介于100~400 m/d,而丰水期在高桥最高可达到3220m/d;其余单元渗透系数低于100 m/d,大多数小于10m/d。总体来说,由于丰水期含水层的饱水度大,渗透系数要高于枯水期。 5、通过地下水均衡计算,确定了各补给项和排泄项的水量。枯水期最重要的补给来源是研究区东北角的侧向补给量,占总补给量的70%,人工开采是最大的排泄项;丰水期最重要的补给源是西部的已知水头边界,占总补给量的49%,东北角的侧向补给量是第二补给源,占39%,地下河出口是最主要的排泄方式,达到排泄总量的74%。 6、对水文地质参数和源汇项敏感度分析的结果表明,不管是枯水期还是丰水期,对研究区水位影响最大的是渗透系数,外部源汇项中则是抽水量对地下水流形态的影响最大。 7、研究区岩溶地下水流速很大,污染物的运移是一个对流占绝对优势的问题,弥散的作用则相对很小。通过在茅草铺地区假设污染源,用MT3DMS程序模拟了地下水污染物在时间和空间上的迁移特征。结果发现:污染羽的形状和扩散方位主要受地下水流场的控制,而污染物的浓度与水量多少相关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

贵州的乌江流域属典型的喀斯特地貌,也是我国严重的酸雨区之一。酸沉降可以导致土壤中盐基离子的流失并释放出具有植物毒性的元素,对植被和生态造成破坏。即使在酸沉降停止后,土壤的退化也会持续,pH值仍可继续降低。因此,加强乌江流域的酸沉降对土壤及生态系统破坏的研究十分必要。乌江中上游地区广泛分布高硫煤和矿床硫化物,煤中的还原态硫化物(主要是黄铁矿)和矿床硫化物经过氧化风化会产生大量的溶解态金属和H2SO4,在污染环境的同时会大大加速碳酸盐岩的化学侵蚀。 本研究在导师刘丛强研究员主持的中国科学院知识创新工程重要方向重大项目(喀斯特地区(贵州乌江流域)物质的水文地球化学循环及其环境效应,批准号:KZCX2-105;乌江流域典型喀斯特土壤-植被生态系统生源要素生物地球化学研究,批准号:KZCX3-SW-140)课题的支持下,选择贵州喀斯特地区的典型河流为研究对象,利用化学质量平衡、同位素地球化学研究手段,探讨了硫酸风化碳酸盐岩对河水化学组成的影响,溶解硫酸盐的来源及硫同位素组成的时空变化,定量计算了丰水期乌江流域硫酸风化碳酸盐岩的侵蚀速率及其对大气CO2释放的影响,并对土壤总硫和硫酸盐的生物地球化学循环进行了同位素示踪研究。获得的主要结论揭示了水-岩作用和人类活动对硫的生物地球化学循环的控制机理,以及硫循环在碳酸盐岩化学风化中的作用,为了解喀斯特地区硫的循环演化及其环境效应提供了重要的基础科学依据。主要结论如下: 硫酸侵蚀碳酸盐岩对河水化学组成的影响 乌江枯、丰水期河水SO42−平均浓度分别为0.65mmol/L和0.48mmol/L,占阴离子总量的25%以上。干流河水SO42−浓度具有从上游到下游逐渐降低的趋势,支流河水SO42−浓度具有明显的区域性差异特征,枯水期上游和下游地区支流的SO42−平均浓度分别为0.80mmol/L和0.26mmol/L,丰水期河水也有类似的特征。SO42−、NO3−、Cl−与Na+浓度比值的相互关系表明河水SO42−具有人为来源。沅江水系河水SO42−含量远低于乌江河水,枯水期平均浓度0.22mmol/L,丰水期平均0.14mmol/L。 乌江流域不同来源H2SO4参与下的碳酸盐岩风化是影响河水化学组成最主要的因素。舞阳河水中的溶质主要来自H2CO3风化白云岩,不存在硫酸风化碳酸盐岩的迹象。清水江河水离子组成则同时受到H2CO3、H2SO4风化碳酸盐岩和H2CO3风化硅酸盐的影响。由此可见,喀斯特地区不同河流的河水化学组成受H2SO4风化碳酸盐岩的影响是不同的。 水-岩作用模拟表明:乌江枯水期河水的CSI在−0.2 ~ 1之间,绝大多数河水处于对CaCO3过饱和状态,丰水期河水的CSI较枯水期平均高0.3,CaCO3全部过饱和。河水PCO2,river相对大气PCO2,atm一般是过饱和的。因此,喀斯特地区河水即具有沉积性又具有向大气释放CO2的趋势。舞阳河水方解石和白云石在枯、丰水期全部过饱和,DSI平均值在两季均远高于CSI,这与舞阳河流域分布着大量的白云岩有关。而清水江大部分河水的方解石和白云石处于不饱和状态。流域不同的地质背景决定了河水中方解石和白云石的饱和状态,在同一地质背景条件下又取决于河水中的CO2分压。 扣除乌江丰水期河水化学组成中H2SO4溶解碳酸盐岩的贡献之后,部分河水由对方解石和白云石过饱和变为不饱和,溶解沉淀性质发生了根本的改变。由此可见,H2SO4风化碳酸盐岩通过改变河水的化学组成,对河水的化学稳定性也存在很大影响。 河水硫同位素地球化学与碳酸盐岩侵蚀 枯水期乌江河水硫同位素δ34S值的变化范围为−15.7‰ 到18.9‰,宽广的δ34S值范围反映了不同河段汇入的SO42−来源于流经具有不同同位素组成特征地质背景的支流。丰水期δ34S值的变化范围小于枯水期,在−11.5‰ 到8.3‰之间。两个季节河水SO42−的δ34S值均随着SO42−浓度的增加而降低。乌江硫酸盐的硫同位素组成具有明显的季节性变化,丰水期干流河水的δ34S值在−6.7‰ ~ −3.9‰之间,平均值较枯水期低3‰。支流河水的硫同位素组成具有明显的区域性差异。舞阳河河水富集34S,清水江河水富集32S,硫同位素组成的季节变化和支流差异远不如乌江明显。 硫同位素示踪显示:乌江上游河水硫酸盐主要来自煤中黄铁矿的氧化、矿床硫化物氧化及雨水;下游河水硫酸盐的硫同位素组成主要介于雨水和蒸发岩端元之间,煤中黄铁矿氧化的贡献较少。不同端元的硫同位素组成表明:丰水期水量增加时,煤中黄铁矿氧化来源的硫酸盐的贡献增加,导致了乌江河水δ34S值的降低。雨水δ34S值季节性变化对河水硫同位素组成的季节性变化的影响是次要的。 乌江河水向贵州省外输出的SO42−通量为170×1010g/a,丰水期占全年SO42−输出总量的72%,上游地区输出的SO42−占年输出总量的80%。煤中黄铁矿风化、雨水、矿床硫化物风化、蒸发岩溶解对丰水期乌江河水SO42-的贡献分别为45%、27%、24%和4%。硫化物氧化产生H2SO4,而后H2SO4侵蚀碳酸盐岩,这是研究区内两个非常重要的硫循环过程。丰水期H2SO4侵蚀碳酸盐岩的速率为35.1t/ (km2•a),约合17.5mm/ka。总的CO2释放通量约为8.1 t/ (km2•a)。通过推导丰水期乌江流域碳酸盐岩侵蚀方程可知,丰水期乌江流域碳酸盐岩的侵蚀有52%是由H2SO4风化造成的。 喀斯特流域土壤硫的生物地球化学 黄壤的总硫含量一般小于0.1%,而石灰土的总硫含量全部大于0.1%, 同一剖面同样深度黄壤总硫含量夏季生长期高于冬季休眠期,但是石灰土则恰恰相反。一般情况下,土壤总硫含量首先与土壤类型有关,其次可能受到植被的影响。即使是同一土壤类型,随着剖面深度的增加总硫含量变化趋势也并不一致。 土壤无机硫酸盐的含量与土壤类型密切相关,黄壤SO42−含量明显高于石灰土。黄壤表层土硫酸盐形态硫占总硫的2.4% ~ 6.4%,随着剖面加深土壤硫酸盐形态硫的含量出现先增加后降低的趋势,最高可占总硫的20%以上,这种现象应该是铁、铝氧化物或氢氧化物对硫酸盐的吸附造成的。同样是黄壤,也可能由于上覆植被的不同造成不同剖面土壤硫酸盐在含量上的差异,或同一剖面不同季节含量上的差异。石灰土硫酸盐形态硫在总硫中的百分含量不超过3%,而且易受淋溶而流失,即使在有植被覆盖的情况下也是如此。 所有样品总硫的δ34S值均为正值且总是大于同层SO42−的δ34S值。随着黄壤剖面的加深δ34S值呈逐渐增加的趋势,有机硫循环过程不断富集34S可能是产生这种现象的原因。 硫同位素组成表明黄壤剖面表层土SO42−应来源于大气沉降。夏季表层土SO42−的δ34S值稍高于冬季,明显高于贵阳夏季大气降水的硫同位素组成,可能是大气总沉降的反映,也可能是不同季节土壤有机硫的矿化水平的不同造成的。黄壤剖面无论冬季还是夏季SO42−均随剖面的加深逐渐富集34S。在剖面上层SO42−的δ34S值与SO42−含量正相关,可能是有机硫矿化生成的SO42−加入的结果。下层土壤硫酸盐δ34S值与含量明显反相关,可能是硫酸盐还原菌发生作用导致了较大的同位素分馏。 从乌江上游至下游,石灰土表层土壤SO42−的硫同位素逐渐富集32S。硫同位素组成表明中、下游石灰土SO42−的来源很可能是大气降水,而上游样品还存在矿山硫的来源。 土壤无机硫酸盐对乌江河水硫酸盐的贡献还不明确,但它不应是乌江河水硫酸盐的主要来源。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文选择贵州山区湖泊—红枫湖和百花湖为研究对象,对两湖水体进行了近两年的采样,揭示了溶解有机质(DOM)的时空分布规律、迁移转化及其影响因素,初步总结了DOM的生物地球化学循环模型。本论文得到以下结论:红枫湖溶解有机碳(DOC)的浓度范围为1.60~3.08 mg·L-1,百花湖DOC的浓度范围为1.71~3.96 mg·L-1。红枫湖溶解有机氮(DON)的浓度范围为0.10~0.37 mg·L-1,百花湖DON的浓度范围为0.16~0.66 mg·L-1。两湖水体中DOC和DON的浓度在湖水完全混合期上下层水体的浓度基本一致,而在湖水化学分层期表现出从上层往下层减小的趋势。藻类活动和降雨可能都对红枫湖DOC浓度的升高有贡献,两种贡献究竟以哪种为主还有待进一步研究。花桥处外来DOM的输入和红枫湖下泄水的稀释作用共同控制着百花湖表层水体DOM浓度的季节变化模式。营养元素的垂向剖面分布与有机质(包括颗粒态有机质和DOM)的矿化有较大的关系。湖泊水体分层对DOM和营养元素迁移转化有较大的影响,颗粒态有机质起到作为DOM内源的作用。HF-S处沉积物孔隙水中的DOC和DON以及NH4+-N可能向上覆水体扩散,而上覆水体的NO3--N可能向沉积物扩散。在红枫湖下层水DOM矿化对下层水体无机碳和氮有贡献,含氮丰富的DOM优先矿化。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本项研究以长江中下游地区的浅水湖泊(太湖、巢湖、龙感湖)为研究对象,碳、氮同位素为研究手段,结合210Pb和14C年代学,以及沉积物中TOC、TN、C/N比值、TP等多种地球化学参数,对近代沉积环境演化过程,沉积物有机质来源以及西太湖形成演化的古环境进行分析研究。通过研究,得到以下主要认识: 1. 太湖沉积物剖面上δ13Corg和C/N比值分布范围指示太湖沉积物的有机物质来源主要是水生藻类。竺山湾T3点基本没有陆源物质输入;梅梁湾T2点有部分陆源物质输入;湖心T4点沉积物有机质来源还可能是不同于梅梁湾和竺山湾的水生植物。沉积物的地球化学参数剖面指示太湖从1920s始,沉积环境受人为因素的影响而逐渐营养化。 2. 巢湖沉积物δ13Corg和δ15N的研究结果,不仅指示沉积物有机质来源主要是水生藻类,受城市污染和农业面源污染输入的一定影响,而且指示了在沉积历史上因为巢湖闸的建成,湖泊生产力和浮游植物物种也发生了改变,湖泊富营养化。 3. 龙感湖沉积物δ13Corg和δ15N的研究分析,表明湖泊有机沉积以自身有机物源为主,受陆源输入影响小。1960s围垦造成营养盐输入量的增加,因为草型湖泊这一特征有利于营养盐的积累,缓解水体的富营养化程度,龙感湖始终处于中营养程度。 4. 太湖、巢湖和龙感湖表层沉积物孔隙水中NO3-和SO42-含量的差异,主要受水域污染状况、底泥有机质的丰富情况、环境水动力条件的变化、泥沙沉积和再悬浮过程引起的元素累积和释放影响,也是藻型湖泊与草型湖泊生产力大小、有机质沉积通量以及微生物丰度和活性等差异的表征。 5. 沉积物表层吸附态NH4+-N含量,体现了水域环境受污染的严重程度是:龙感湖<巢湖<太湖梅梁湾。三个湖泊中底泥有机质丰度差异和生物参与的氨化作用差别都非常显著。三个湖泊的沉积物表层铵态氮的含量,均表明了沉积物表层向上覆水体可能具有潜在的铵态氮迁移趋势。 6. 太湖古环境分析研究中,竺山湾和梅梁湾沉积物剖面的粒度分析、δ13Corg、δ15N、TOC、TN、C/N比值和TP都随沉积深度,对应14C定年结果,指示了西太湖沉积演化历程的三个阶段及其有机质来源。6870~6670 a B.P.,研究区被咸水覆盖,有机质来源是典型的水体自生来源,在竺山湾有逐渐增加的C4植物的输入。6670~5140 a B.P.,可能形成瀉湖并出现沉积间断。5140 a B.P.至今,形成淡水湖泊,沉积有机质主要来自湖泊自生物源,存在沉积间断。 7. 长江中下游的浅水湖泊沉积物中的有机质来源主要以湖泊自生来源为主,因为水体初级生产力的升高受陆源物质输入增加的影响,流域内人类活动引起的陆源物质输入不容忽视。长江中下游湖泊的近代沉积环境演化过程因为近岸距离、水动力强度和发育不同的水生植物等因素存在区域性差异,导致湖泊富营养化的最大根源是人为因素的影响发生的环境演变。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

洱海和阿哈湖都是处于云贵高原上的湖泊,但是在气候、光照、氧含量、硫酸盐含量、成湖历史上有显著的差别,是研究湖泊沉积中硫的微生物地球化学循环机制的绝佳对象。我们利用分光光度法、离子色谱、高效液相色谱、荧光原位杂交等方法获得了洱海和阿哈湖春季、秋季和冬季沉积物中的硫形态(S2-、SO32-、S2O32-、SO42-、AVS、S0、FeS2),和硫酸盐还原菌的空间分布规律,并分析了它们之间的空间耦合关系,初步得出了以下几点认识: 1. 限于H2S低于检出限,洱海春季、秋季和冬季沉积物孔隙水中无H2S的检出,阿哈湖春季和冬季亦无H2S的检出,仅秋季表层孔隙水中有少量的H2S检出。其原因是由于Fe2+消耗殆尽,多余的H2S与Mn2+结合形成MnS,MnS溶度积较大,一部分MnS发生水解产生S2-。 2. 在洱海春季、秋季、冬季三个季节中,春季沉积物孔隙水中的SO42-含量最少,呈现出还原特征;冬季最高,但空间分布不连续,既呈现氧化特征又呈现还原特征。我们认为这是由于黏附沉降在湖泊沉积物顶部形成生物膜所致,并由此提出微生物粘附沉降模型:春季、冬季湖水表层温度较低而底层温度高,湖水发生垂直对流运动,其中微生物也随湖水运动,当微生物到达湖底沉积物顶部时,其中一些表面黏性的微生物就会黏附在沉积物上,而且先前黏附在沉积物上的微生物还会会黏附更多的微生物,只要对流过程一直发生,粘附沉降作用就一直继续,这一作用可以在洱海沉积物表面形成一层厚实的生物膜。冬季生物膜还未完全形成,所以湖泊沉积物既呈现氧化特征又呈现还原特征;春季生物膜已经完全形成,湖泊沉积物呈现出还原特征。 3. 两个湖泊沉积物单质硫在春冬季节明显高于秋季,表明单质硫在冬、春季积累,在秋季消耗。认为冬、春季还原作用对单质硫的消耗不产生影响,秋季硫氧化菌的氧化作用引起单质硫减少。此外,冬季和春季单质硫的空间分布极大相似,春季酸可挥发性硫(AVS)和单质硫的空间分布也存在相似性,显示可能存在稳定的单质硫形成机制,而且这一机制的制约条件没有发生变化,这可能是因为单质硫是在硫酸盐还原过程中与AVS同时形成的。 4. 利用荧光原位杂交法得到了沉积物中硫酸盐还原菌的空间分布结果,。从中可以辨识沉积物中硫酸盐还原菌的分布随深度增加存在0-5cm,5-8cm, 8-14cm三个高峰,从而分为0-5cm,5-8cm,8-14cm和14cm以下四个层次,四个层次中最顶层(0-5cm),恰好是一年中各种形态硫氧化还原作用最活跃的一层,二者之间具有空间耦合关系。这一层虽然硫酸盐还原菌数量不是最多,但活性较强。 5. 根据单质硫大量出现的时间与硫酸盐还原作用发生的时间一致,春季酸可挥发性硫(AVS)也和单质硫空间分布存在很大相似性。提出了单质硫是在硫酸盐还原过程中与酸可挥发性硫(AVS)同时形成的:一方面硫酸盐还原菌利用硫酸盐作为电子受体,产生H2S;另一方面硫酸盐还原菌(或其他微生物)分解有机物,产生低级脂肪酸和能量。且生成的低级脂肪酸和H2S可能有特定比例关系。这样,既有丰富的H2S又有H+,H2S便会被其高价态的物质(如 SO32-,S2O32-,SO42-,NO3-等)自发地氧化为单质硫。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

大气中不断增加的温室气体浓度,将对气候、生态环境和人类活动等一系列问题产生重大影响,因此其“源”﹑“汇”效应备受关注。水库,作为人为活动对大气温室气体浓度影响的一个重要方面,也越来越受到国、内外学者的关注。本论文对贵州省喀斯特地区两个富营养水库(红枫湖、百花湖)中主要温室气体(CO2﹑CH4﹑N2O)在不同月份的水体中的分布规律进行研究,并结合两湖具体水环境条件,分析了影响两湖水体中CO2﹑CH4﹑N2O变化的因素,进而阐明两湖水体中CO2﹑CH4﹑N2O产生与释放的机理。本论文得到的结论如下: 1.由于地理位置和气候条件类似,所以两库水体中pCO2变化规律类似:两库表层水中pCO2在6月、8月明显低于大气CO2分压,其他月份则明显高于大气CO2分压。从全年角度来说,红枫湖表层水pCO2为874.2±774.4µatm,百花湖为1131.7±1164.0µatm,都是大气CO2的“源”。两湖pCO2与Chla之间存在的显著负相关,说明浮游植物光合作用与细菌呼吸作用共同影响是两湖pCO2出现季节变化的主要原因。 2.夏季,水体中光合作用产生的有机质发生降解产生CO2对温跃层中CO2的增加起重要作用;沉积物中有机质降解导致静水层中CO2积累,这种作用在秋﹑冬季有所降低,可能与水温有关。而秋冬季,随着温跃层的消失,在水体混合作用下,夏季水体中积累的CO2重新释放到表层水中使其pCO2升高。 3.通过与国内、外其他地区湖泊(水库)表层水中CO2的比较,发现:(1)由于红枫湖与百花湖地处喀斯特山区,陆源输入的有机碳比北部温带地区少,所以表层水中CO2低,对大气CO2释放的贡献较小。(2)由于富营养化现象,两库夏季表层水体成为大气CO2的“汇”。并且,就全年而言,表层水中CO2低于北部温带地区,说明两库光合作用固定的C返回大气的程度可能较低。 4.两湖表层水中CH4浓度的变化规律为:枯水期>丰水期,但在所有采样期间两湖始终是大气CH4的“源”。就全年而言,红枫湖两采样点HF-N和HF-S表层水中CH4浓度分别为0.19±0.09µmol/L和0.48±0.53µmol/L,百花湖两采样点BH-1和BH-2分别为0.32±0.29µmol/L和0.29±0.20µmol/L。两湖表层水中CH4浓度变化可能由以下几方面原因造成:(1)枯水期,水体滞留时间长,水体中的CH4得到积累;(2)丰水期,藻类初级生产造成表层水中DO含量增加,表层水体中CH4被氧化的程度较高;(3)丰水期,径流及降雨的增加也可能造成表层水体中CH4被稀释。 5.两湖湖底水体中CH4浓度的变化规律为:枯水期〈丰水期。就全年而言,HF-N和HF-S点底层水中CH4浓度分别为16.49±26.16µmol/L和8.80±15.30µmol/L,BH-1和BH-2分别为6.03±7.07µmol/L和4.41±7.00µmol/L。浮游植物光合作用产生的有机物及湖底水温﹑含氧状况是影响CH4产生的主要因素。SO42-也对湖底CH4的产生起一定抑制作用。 6.夏季,两湖湖水表层藻类的初级生产与湖水底层沉积物的降解对水体中CH4产生有影响。而热分层和两湖静水层中缺氧环境使得CH4得到积累。而到了秋冬季节,在水体混合作用下这部分CH4在水体中重新分布,并且由于氧化作用加强而被损耗。 7.两湖表层水中N2O的变化规律为:夏季N2O明显低于其他季节,但在所有采样期间内两湖都是大气N2O的“源”。从全年来看,红枫湖HF-N和HF-S两采样点表层水中N2O浓度分别为;46.31±29.65nmol/L,36.93±18.41nmol/L;百花湖BH-1和BH-2两采样点表层水中N2O浓度分别为102.13±79.53nmol/L,99.51±75.77nmol/L。硝化反应是影响两湖表层水中N2O季节变化的主要原因,并受表层水温﹑DO及NO3-等共同影响。 8.通过比较水体中NO3-﹑NH4+及N2O的分布特征,发现:春季,红枫湖水体中以硝化反应为主;夏季,两湖温跃层以上水体中以硝化反应为主,湖底以反硝化作用为主;秋﹑冬季节,虽然有个别采样点出现硝化或反硝化反应,但总体上两湖水体中N2O以水体混合作用为主。