963 resultados para Maxwell equations
Resumo:
For the reciprocal-test fixtures, there are six independent S-parameters to. be determined, and the thru-short-match (TSM) calibration can provide eight calibration equations. In this paper, the relation of calibration equations is investigated. It has been shown that the four equations obtained from the measurement with a transmission standard can be used simultaneously in the calibration. Experimental results show that the different choice of equations will lead to quite different solution, and the calibration accuracy can be improved by taking advantages of the established relation among the calibration equations and properly choosing calibration equations.
Resumo:
A novel and accurate finite volume method has been presented to solve the shallow water equations on unstructured grid in plane geometry. In addition to the volume integrated average (VIA moment) for each mesh cell, the point values (PV moment) defined on cell boundary are also treated as the model variables. The volume integrated average is updated via a finite volume formulation, and thus is numerically conserved, while the point value is computed by a point-wise Riemann solver. The cell-wise local interpolation reconstruction is built based on both the VIA and the PV moments, which results in a scheme of almost third order accuracy. Efforts have also been made to formulate the source term of the bottom topography in a way to balance the numerical flux function to satisfy the so-called C-property. The proposed numerical model is validated by numerical tests in comparison with other methods reported in the literature. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory, with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schrodinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.
Resumo:
We derive the generalized Friedmann equation governing the cosmological evolution inside the thick brane model in the presence of two curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. We find two effective four-dimensional reductions of the generalized Friedmann equation in some limits and demonstrate that the reductions but not the generalized Friedmann equation can be rewritten as the first law of equilibrium thermodynamics on the apparent horizon of thick braneworld.
Resumo:
A series of narrow molecular weight distribution fractions of phenolphthalein polyarylether sulfone(PES-C) had been prepared, The <(M) over bar (w)> of these fractions were determined by conventional light scattering method. The [eta] and the Huggins slope constant k' in DMF, CHCl3 and 1,2-dichloroethane were also determined. The Huggins constants are greater than 0.5 in all of these solvents showing a special solubility behavior. The Mark-Houwink equations of PES-C in these solvents at 25 degrees C are [eta] = 2.79 x 10(-2) <(M) over bar (0.615)(w)> (DMF); [eta] = 3.96 x 10(-2) <(M) over bar (0.58)(w)> (CHCl3); [eta] = 7.40 x 10(-2) <(M) over bar (0.52)(w)> (CH2ClCH2Cl).
Resumo:
Interfacial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.
Resumo:
We have simulated numerically an automated Maxwell's demon inspired by Smoluchowski's ideas of 1912. Two gas chambers of equal area are connected via an opening that is covered by a trapdoor. The trapdoor can open to the left but not to the right, and is intended to rectify naturally occurring variations in density between the two chambers. Our results confirm that though the trapdoor behaves as a rectifier when large density differences are imposed by external means, it can not extract useful work from the thermal motion of the molecules when left on its own.
Resumo:
This project investigates the computational representation of differentiable manifolds, with the primary goal of solving partial differential equations using multiple coordinate systems on general n- dimensional spaces. In the process, this abstraction is used to perform accurate integrations of ordinary differential equations using multiple coordinate systems. In the case of linear partial differential equations, however, unexpected difficulties arise even with the simplest equations.
Resumo:
This paper explores automating the qualitative analysis of physical systems. It describes a program, called PLR, that takes parameterized ordinary differential equations as input and produces a qualitative description of the solutions for all initial values. PLR approximates intractable nonlinear systems with piecewise linear ones, analyzes the approximations, and draws conclusions about the original systems. It chooses approximations that are accurate enough to reproduce the essential properties of their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. It derives additional properties, such as boundedness or periodicity, by theoretical methods. I demonstrate PLR on several common nonlinear systems and on published examples from mechanical engineering.
Resumo:
Gough, John; Van Handel, R., (2007) 'Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode', Journal of Statistical Physics 127(3) pp.575-607 RAE2008