839 resultados para Learning. Mathematics. Quadratic Functions. GeoGebra
Resumo:
Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.
Resumo:
In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Resumo:
This study concerns teachers’ use of digital technologies in student assessment, and how the learning that is developed through the use of technology in mathematics can be evaluated. Nowadays math teachers use digital technologies in their teaching, but not in student assessment. The activities carried out with technology are seen as ‘extra-curricular’ (by both teachers and students), thus students do not learn what they can do in mathematics with digital technologies. I was interested in knowing the reasons teachers do not use digital technology to assess students’ competencies, and what they would need to be able to design innovative and appropriate tasks to assess students’ learning through digital technology. This dissertation is built on two main components: teachers and task design. I analyze teachers’ practices involving digital technologies with Ruthven’s Structuring Features of Classroom Practice, and what relation these practices have to the types of assessment they use. I study the kinds of assessment tasks teachers design with a DGE (Dynamic Geometry Environment), using Laborde’s categorization of DGE tasks. I consider the competencies teachers aim to assess with these tasks, and how their goals relate to the learning outcomes of the curriculum. This study also develops new directions in finding how to design suitable tasks for student mathematical assessment in a DGE, and it is driven by the desire to know what kinds of questions teachers might be more interested in using. I investigate the kinds of technology-based assessment tasks teachers value, and the type of feedback they give to students. Finally, I point out that the curriculum should include a range of mathematical and technological competencies that involve the use of digital technologies in mathematics, and I evaluate the possibility to take advantage of technology feedback to allow students to continue learning while they are taking a test.
Resumo:
Diese Arbeit widmet sich den Darstellungssätzen für symmetrische indefinite (das heißt nicht-halbbeschränkte) Sesquilinearformen und deren Anwendungen. Insbesondere betrachten wir den Fall, dass der zur Form assoziierte Operator keine Spektrallücke um Null besitzt. Desweiteren untersuchen wir die Beziehung zwischen reduzierenden Graphräumen, Lösungen von Operator-Riccati-Gleichungen und der Block-Diagonalisierung für diagonaldominante Block-Operator-Matrizen. Mit Hilfe der Darstellungssätze wird eine entsprechende Beziehung zwischen Operatoren, die zu indefiniten Formen assoziiert sind, und Form-Riccati-Gleichungen erreicht. In diesem Rahmen wird eine explizite Block-Diagonalisierung und eine Spektralzerlegung für den Stokes Operator sowie eine Darstellung für dessen Kern erreicht. Wir wenden die Darstellungssätze auf durch (grad u, h() grad v) gegebene Formen an, wobei Vorzeichen-indefinite Koeffzienten-Matrizen h() zugelassen sind. Als ein Resultat werden selbstadjungierte indefinite Differentialoperatoren div h() grad mit homogenen Dirichlet oder Neumann Randbedingungen konstruiert. Beispiele solcher Art sind Operatoren die in der Modellierung von optischen Metamaterialien auftauchen und links-indefinite Sturm-Liouville Operatoren.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
This paper studies the structure of inner functions under the operation of composition, and in particular the notions or primeness and semiprimeness. Results proved include the density of prime finite Blaschke products in the set of finite Blaschke products, the semiprimeness of finite products of thin Blaschke products and their approximability by prime Blaschke products. An example of a nonsemiprime Blaschke product that is a Frostman Blaschke product is also provided.
Resumo:
To every partially ordered set (poset), one can associate a generating function, known as the P-partition generating function. We find necessary conditions and sufficient conditions for two posets to have the same P-partition generating function. We define the notion of a jump sequence for a labeled poset and show that having equal jumpsequences is a necessary condition for generating function equality. We also develop multiple ways of modifying posets that preserve generating function equality. Finally, we are able to give a complete classification of equalities among partially ordered setswith exactly two linear extensions.
Resumo:
Given the weight sequence for a subnormal recursively generated weighted shift on Hilbert space, one approach to the study of classes of operators weaker than subnormal has been to form a backward extension of the shift by prefixing weights to the sequence. We characterize positive quadratic hyponormality and revisit quadratic hyponormality of certain such backward extensions of arbitrary length, generalizing earlier results, and also show that a function apparently introduced as a matter of convenience for quadratic hyponormality actually captures considerable information about positive quadratic hyponormality.
Resumo:
Reiner, Shaw and van Willigenburg showed that if two skew Schur functions sA and sB are equal, then the skew shapes $A$ and $B$ must have the same "row overlap partitions." Here we show that these row overlap equalities are also implied by a much weaker condition than Schur equality: that sA and sB have the same support when expanded in the fundamental quasisymmetric basis F. Surprisingly, there is significant evidence supporting a conjecture that the converse is also true. In fact, we work in terms of inequalities, showing that if the F-support of sA contains that of sB, then the row overlap partitions of A are dominated by those of B, and again conjecture that the converse also holds. Our evidence in favor of these conjectures includes their consistency with a complete determination of all F-support containment relations for F-multiplicity-free skew Schur functions. We conclude with a consideration of how some other quasisymmetric bases fit into our framework.