523 resultados para Landsat
Resumo:
This study aimed to evaluate the microclimate changes surrounding the wind farm Macau Pilot / RN, present in the municipality of the same name. To achieve this goal made use of remote sensing techniques using Landsat - 5 TM and 7 ETM +, from which made it possible evaluation of temperature changes on the surface, this around the park in periods prior to its implementation, to the today. For evaluation of the temperature data that has been generated by applying a template was performed its correlation with field data collection and evaluated the degree of correlation, in order to confirm the validity of the data acquired by satellite. Also held was a characterization of the climate of the region based on the data of this climatological station in Macau. Once collected this data made possible the evaluation of climate change policy in the study region. After validation of the temperature models, an analysis of the generated temperature histograms was performed visually could not identify any significant change. However when analyzing the temperature data at a higher level of detail, a data pattern of behavior was detected for both periods evaluated, yet could not see a distinction between the periods of pre-operation of the park, and post-operation . From this result was levantas hypotheses to explain the behavior of the data, the first of which is the presence of moisture in the soil, and the second to the soil composition. In order to validate the hypotheses were applied PDI techniques, involving a combination of different RGB bands of Landsat 5 and the implementation of Reason bands procedure that might show the elements present on the soil surface.
Resumo:
This dataset provides an inventory of thermo-erosional landforms and streams in three lowland areas underlain by ice-rich permafrost of the Yedoma-type Ice Complex at the Siberian Laptev Sea coast. It consists of two shapefiles per study region: one shapefile for the digitized thermo-erosional landforms and streams, one for the study area extent. Thermo-erosional landforms were manually digitized from topographic maps and satellite data as line features and subsequently analyzed in a Geographic Information System (GIS) using ArcGIS 10.0. The mapping included in particular thermo-erosional gullies and valleys as well as streams and rivers, since development of all of these features potentially involved thermo-erosional processes. For the Cape Mamontov Klyk site, data from Grosse et al. [2006], which had been digitized from 1:100000 topographic map sheets, were clipped to the Ice Complex extent of Cape Mamontov Klyk, which excludes the hill range in the southwest with outcropping bedrock and rocky slope debris, coastal barrens, and a large sandy floodplain area in the southeast. The mapped features (streams, intermittent streams) were then visually compared with panchromatic Landsat-7 ETM+ satellite data (4 August 2000, 15 m spatial resolution) and panchromatic Hexagon data (14 July 1975, 10 m spatial resolution). Smaller valleys and gullies not captured in the maps were subsequently digitized from the satellite data. The criterion for the mapping of linear features as thermo-erosional valleys and gullies was their clear incision into the surface with visible slopes. Thermo-erosional features of the Lena Delta site were mapped on the basis of a Landsat-7 ETM+ image mosaic (2000 and 2001, 30 m ground resolution) [Schneider et al., 2009] and a Hexagon satellite image mosaic (1975, 10 m ground resolution) [G. Grosse, unpublished data] of the Lena River Delta within the extent of the Lena Delta Ice Complex [Morgenstern et al., 2011]. For the Buor Khaya Peninsula, data from Arcos [2012], which had been digitized based on RapidEye satellite data (8 August 2010, 6.5 m ground resolution), were completed for smaller thermo-erosional features using the same RapidEye scene as a mapping basis. The spatial resolution, acquisition date, time of the day, and viewing geometry of the satellite data used may have influenced the identification of thermo-erosional landforms in the images. For Cape Mamontov Klyk and the Lena Delta, thermo-erosional features were digitized using both Hexagon and Landsat data; Hexagon provided higher resolution and Landsat provided the modern extent of features. Allowance of up to decameters was made for the lateral expansion of features between Hexagon and Landsat acquisitions (between 1975 and 2000).
Resumo:
This study used Landsat 8 satellite imagery to identify environmental variables of households with malaria vector breeding sites in a malaria endemic rural district in Western Kenya. Understanding the influence of environmental variables on the distribution of malaria has been critical in the strengthening of malaria control programs. Using remote sensing and GIS technologies, this study performed a land classification, NDVI, Tasseled Cap Wetness Index, and derived land surface temperature values of the study area and examined the significance of each variable in predicting the probability of a household with a mosquito breeding site with and without larvae. The findings of this study revealed that households with any potential breeding sites were characterized by higher moisture, higher vegetation density (NDVI) and in urban areas or roads. The results of this study also confirmed that land surface temperature was significant in explaining the presence of active mosquito breeding sites (P< 0.000). The present study showed that freely available Landsat 8 imagery has limited use in deriving environmental characteristics of malaria vector habitats at the scale of the Bungoma East District in Western Kenya.
Resumo:
The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.
Resumo:
Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely Vänern, Vättern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods.
Resumo:
This study aims at exploring the potential impact of forest protection intervention on rural households’ private fuel tree planting in Chiro district of eastern Ethiopia. The study results revealed a robust and significant positive impact of the intervention on farmers’ decisions to produce private household energy by growing fuel trees on their farm. As participation in private fuel tree planting is not random, the study confronts a methodological issue in investigating the causal effect of forest protection intervention on rural farm households’ private fuel tree planting through non-parametric propensity score matching (PSM) method. The protection intervention on average has increased fuel tree planting by 503 (580.6%) compared to open access areas and indirectly contributed to slowing down the loss of biodiversity in the area. Land cover/use is a dynamic phenomenon that changes with time and space due to anthropogenic pressure and development. Forest cover and land use changes in Chiro District, Ethiopia over a period of 40 years was studied using remotely sensed data. Multi temporal satellite data of Landsat was used to map and monitor forest cover and land use changes occurred during three point of time of 1972,1986 and 2012. A pixel base supervised image classification was used to map land use land cover classes for maps of both time set. The result of change detection analysis revealed that the area has shown a remarkable land cover/land use changes in general and forest cover change in particular. Specifically, the dense forest cover land declined from 235 ha in 1972 to 51 ha in 1986. However, government interventions in forest protection in 1989 have slowed down the drastic change of dense forest cover loss around the protected area through reclaiming 1,300 hectares of deforested land through reforestation program up to 2012.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.
Resumo:
We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1 m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (~6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0-100 cm depth interval is 33.8 kg C/m**2, of which 11.8 kg C/m**2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons.
Resumo:
Global air surface temperatures and precipitation have increased over the last several decades resulting in a trend of greening across the Circumpolar Arctic. The spatial variability of warming and the inherent effects on plant communities has not proven to be uniform or homogeneous on global or local scales. We can apply remote sensing vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to map and monitor vegetation change (e.g., phenology, greening, percent cover, and biomass) over time. It is important to document how Arctic vegetation is changing, as it will have large implications related to global carbon and surface energy budgets. The research reported here examined vegetation greening across different spatial and temporal scales at two disparate Arctic sites: Apex River Watershed (ARW), Baffin Island, and Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU. To characterize the vegetation in the ARW, high spatial resolution WorldView-2 data were processed to create a supervised land-cover classification and model percent vegetation cover (PVC) (a similar process had been completed in a previous study for the CBAWO). Meanwhile, NDVI data spanning the past 30 years were derived from intermediate resolution Landsat data at the two Arctic sites. The land-cover classifications at both sites were used to examine the Landsat NDVI time series by vegetation class. Climate variables (i.e., temperature, precipitation and growing season length (GSL) were examined to explore the potential relationships of NDVI to climate warming. PVC was successfully modeled using high resolution data in the ARW. PVC and plant communities appear to reside along a moisture and altitudinal gradient. The NDVI time series demonstrated an overall significant increase in greening at the CBAWO (High Arctic site), specifically in the dry and mesic vegetation type. However, similar overall greening was not observed for the ARW (Low Arctic site). The overall increase in NDVI at the CBAWO was attributed to a significant increase in July temperatures, precipitation and GSL.
Resumo:
The study of the Upper Jurassic-Lower Cretaceous deposits (Higueruelas, Villar del Arzobispo and Aldea de Cortés Formations) of the South Iberian Basin (NW Valencia, Spain) reveals new stratigraphic and sedimentological data, which have significant implications on the stratigraphic framework, depositional environments and age of these units. The Higueruelas Fm was deposited in a mid-inner carbonate platform where oncolitic bars migrated by the action of storms and where oncoid production progressively decreased towards the uppermost part of the unit. The overlying Villar del Arzobispo Fm has been traditionally interpreted as an inner platform-lagoon evolving into a tidal-flat. Here it is interpreted as an inner-carbonate platform affected by storms, where oolitic shoals protected a lagoon, which had siliciclastic inputs from the continent. The Aldea de Cortés Fm has been previously interpreted as a lagoon surrounded by tidal-flats and fluvial-deltaic plains. Here it is reinterpreted as a coastal wetland where siliciclastic muddy deposits interacted with shallow fresh to marine water bodies, aeolian dunes and continental siliciclastic inputs. The contact between the Higueruelas and Villar del Arzobispo Fms, classically defined as gradual, is also interpreted here as rapid. More importantly, the contact between the Villar del Arzobispo and Aldea de Cortés Fms, previously considered as unconformable, is here interpreted as gradual. The presence of Alveosepta in the Villar del Arzobispo Fm suggests that at least part of this unit is Kimmeridgian, unlike the previously assigned Late Tithonian-Middle Berriasian age. Consequently, the underlying Higueruelas Fm, previously considered Tithonian, should not be younger than Kimmeridgian. Accordingly, sedimentation of the Aldea de Cortés Fm, previously considered Valangian-Hauterivian, probably started during the Tithonian and it may be considered part of the regressive trend of the Late Jurassic-Early Cretaceous cycle. This is consistent with the dinosaur faunas, typically Jurassic, described in the Villar del Arzobispo and Aldea de Cortés Fms.
Resumo:
La tordeuse des bourgeons de l’épinette (Choristoneura fumiferana, TBE) est l’insecte ravageur le plus important de la forêt boréale de l’est de l’Amérique du Nord. Depuis 2006, la région de la Côte-Nord est affectée par une épidémie de TBE et les superficies forestières infestées doublent annuellement. Des images satellitaires Landsat ont été utilisées pour cartographier la sévérité de l’épidémie avec une approche de détection de changements, en utilisant une image pré-épidémie (2004) et une image prise pendant l’épidémie (2013). Des relevés terrains de la défoliation par la TBE ont été utilisés pour développer (R2 = 0,50) une cartographie fiable (R2 de validation = 0,64) et non biaisée de la sévérité des infestations de la TBE sur une échelle continue de sévérité (0-100%) pour la région d’étude. Une analyse des facteurs environnementaux affectant la sévérité des infestations (extraite de la carte de défoliation) a démontré l’importance de la composition forestière en sapin baumier tant à l’échelle locale qu’à l’échelle du paysage. De plus, une analyse de contexte spatial montre que dans les sites peu défoliés (défoliation cumulée < 50%), le meilleur prédicteur est plutôt son abondance à l’échelle du paysage (distance > 500 m). Ces résultats suggèrent une interaction entre les échelles spatiales et temporelles lors des épidémies de TBE.
Resumo:
Remote Sensing has been used for decades, and more and more applications are added to its repertoire. With this study we aim to show the use of Remote Sensing in the field of vegetation recovery monitoring in burned areas and the added value of data with a high spatial resolution. This was done by analysing both Landsat 7 and 8 scenes, after the forest fire of summer 2012 in the parish of Calde, in the central region of Portugal, as well as an orthophoto produced with images acquired by an unmanned aerial vehicle.
Resumo:
The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011), due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST) of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI) values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of nighttime LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI) effect in existing medium size cities and future developments adjacent to those cities.
Resumo:
Maps depicting spatial pattern in the stability of summer greenness could advance understanding of how forest ecosystems will respond to global changes such as a longer growing season. Declining summer greenness, or “greendown”, is spectrally related to declining near-infrared reflectance and is observed in most remote sensing time series to begin shortly after peak greenness at the end of spring and extend until the beginning of leaf coloration in autumn,. Understanding spatial patterns in the strength of greendown has recently become possible with the advancement of Landsat phenology products, which show that greendown patterns vary at scales appropriate for linking these patterns to proposed environmental forcing factors. This study tested two non-mutually exclusive hypotheses for how leaf measurements and environmental factors correlate with greendown and decreasing NIR reflectance across sites. At the landscape scale, we used linear regression to test the effects of maximum greenness, elevation, slope, aspect, solar irradiance and canopy rugosity on greendown. Secondly, we used leaf chemical traits and reflectance observations to test the effect of nitrogen availability and intrinsic water use efficiency on leaf-level greendown, and landscape-level greendown measured from Landsat. The study was conducted using Quercus alba canopies across 21 sites of an eastern deciduous forest in North America between June and August 2014. Our linear model explained greendown variance with an R2=0.47 with maximum greenness as the greatest model effect. Subsequent models excluding one model effect revealed elevation and aspect were the two topographic factors that explained the greatest amount of greendown variance. Regression results also demonstrated important interactions between all three variables, with the greatest interaction showing that aspect had greater influence on greendown at sites with steeper slopes. Leaf-level reflectance was correlated with foliar δ13C (proxy for intrinsic water use efficiency), but foliar δ13C did not translate into correlations with landscape-level variation in greendown from Landsat. Therefore, we conclude that Landsat greendown is primarily indicative of landscape position, with a small effect of canopy structure, and no measureable effect of leaf reflectance. With this understanding of Landsat greendown we can better explain the effects of landscape factors on vegetation reflectance and perhaps on phenology, which would be very useful for studying phenology in the context of global climate change