890 resultados para Kinetic theory of gases.
Resumo:
Zusammenfassung Um zu einem besseren Verständnis des Prozesses der Biomineralisation zu gelangen, muss das Zusammenwirken der verschiedenen Typen biologischer Makromoleküle, die am Keimbildungs- und Wachstumsprozess der Minerale beteiligt sind, berücksichtigt werden. In dieser Arbeit wird ein neues Modellsystem eingeführt, das aus einem SAM (self-assembled monolayer) mit verschiedenen Funktionalitäten und unterschiedlichen, gelösten Makromolekülen besteht. Es konnte gezeigt werden, dass die Kristallisation von Vaterit (CaCO3) sowie Strontianit (SrCO3) Nanodrähten der Präsenz von Polyacrylat in Kooperation mit einer COOH-funktionalisierten SAM-Oberfläche zugeschrieben werden kann. Die Kombination bestehend aus einer polaren SAM-Oberfläche und Polyacrylat fungiert als Grenzfläche für die Struktur dirigierende Kristallisation von Nanodraht-Kristallen. Weiter konnte gezeigt werden, dass die Phasenselektion von CaCO3 durch die kooperative Wechselwirkung zwischen einer SAM-Oberfläche und einem daran adsorbierten hb-Polyglycerol kontrolliert wird. Auch die Funktionalität einer SAM-Oberfläche in Gegenwart von Carboxymethyl-cellulose übt einen entscheidenden Einfluss auf die Phasenselektion des entstehenden Produktes aus. In der vorliegenden Arbeit wurden Untersuchungen an CaCO3 zur homogenen Keimbildung, zur Nukleation in Gegenwart eines Proteins sowie auf Kolloiden, die als Template fungieren, mittels Kleinwinkel-Neutronenstreuung durchgeführt. Die homogene Kristallisation in wässriger Lösung stellte sich als ein mehrstufiger Prozess heraus. In Gegenwart des Eiweißproteins Ovalbumin konnten drei Phasen identifiziert werden, darunter eine anfänglich vorhandene amorphe sowie zwei kristalline Phasen.
Resumo:
In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.
Resumo:
This work deals with the theory of Relativity and its diffusion in Italy in the first decades of the XX century. Not many scientists belonging to Italian universities were active in understanding Relativity, but two of them, Max Abraham and Tullio Levi-Civita left a deep mark. Max Abraham engaged a substantial debate against Einstein between 1912 and 1914 about electromagnetic and gravitation aspects of the theories. Levi-Civita played a fundamental role in giving Einstein the correct mathematical instruments for the General Relativity formulation since 1915. This work, which doesn't have the aim of a mere historical chronicle of the events, wants to highlight two particular perspectives: on one hand, the importance of Abraham-Einstein debate in order to clarify the basis of Special Relativity, to observe the rigorous logical structure resulting from a fragmentary reasoning sequence and to understand Einstein's thinking; on the other hand, the originality of Levi-Civita's approach, quite different from the Einstein's one, characterized by the introduction of a method typical of General Relativity even to Special Relativity and the attempt to hide the two Einstein Special Relativity postulates.
Resumo:
This dissertation mimics the Turkish college admission procedure. It started with the purpose to reduce the inefficiencies in Turkish market. For this purpose, we propose a mechanism under a new market structure; as we prefer to call, semi-centralization. In chapter 1, we give a brief summary of Matching Theory. We present the first examples in Matching history with the most general papers and mechanisms. In chapter 2, we propose our mechanism. In real life application, that is in Turkish university placements, the mechanism reduces the inefficiencies of the current system. The success of the mechanism depends on the preference profile. It is easy to show that under complete information the mechanism implements the full set of stable matchings for a given profile. In chapter 3, we refine our basic mechanism. The modification on the mechanism has a crucial effect on the results. The new mechanism is, as we call, a middle mechanism. In one of the subdomain, this mechanism coincides with the original basic mechanism. But, in the other partition, it gives the same results with Gale and Shapley's algorithm. In chapter 4, we apply our basic mechanism to well known Roommate Problem. Since the roommate problem is in one-sided game patern, firstly we propose an auxiliary function to convert the game semi centralized two-sided game, because our basic mechanism is designed for this framework. We show that this process is succesful in finding a stable matching in the existence of stability. We also show that our mechanism easily and simply tells us if a profile lacks of stability by using purified orderings. Finally, we show a method to find all the stable matching in the existence of multi stability. The method is simply to run the mechanism for all of the top agents in the social preference.
Resumo:
We introduce labelled sequent calculi for indexed modal logics. We prove that the structural rules of weakening and contraction are height-preserving admissible, that all rules are invertible, and that cut is admissible. Then we prove that each calculus introduced is sound and complete with respect to the appropriate class of transition frames.
Resumo:
DNA elongation is performed by Pol III α subunit in E. coli, stimulated by the association with ε and θ subunits. These three subunits define the DNA Pol III catalytic core. There is controversy about the DNA Pol III assembly for the simultaneous control of lagging and leading strands replication, since some Authors propose a dimeric model with two cores, whereas others have assembled in vitro a trimeric DNA Pol III with a third catalytic core, which increases the efficiency of DNA replication. Moreover, the function of the PHP domain, located at the N-terminus of α subunit, is still unknown. Previous studies hypothesized a possible pyrophosphatase activity, not confirmed yet. The present Thesis highlights by the first time the production in vivo of a trimeric E. coli DNA Pol III by co-expressing α, τ, ε and θ subunits. This trimeric complex has been enzymatically characterized and a molecular model has been proposed, with 2 α subunits sustaining the lagging-strand replication whereas the third core replicates the leading strand. In addition, the pyrophosphatase activity of the PHP domain has been confirmed. This activity involves, at least, the H12 and the D19 residues, whereas the D201 regulates phosphate release. On the other hand, an artificial polymerase (HoLaMa), designed by deleting the exonuclease domain of Klenow Fragment, has been expressed, purified and characterized for a better understanding of bacterial polymerases mechanism. The absence of exonuclease domain impaired enzyme processivity, since this domain is involved in DNA binding. Finally, Klenow enzyme, HoLaMa, α subunit and DNA Pol III αεθ have been characterized at the single-molecule level by FRET analysis, combining ALEX and TIRF microscopy. Fluorescently-labeled DNA molecules were immobilized, and changes in FRET efficiency enabled us to study polymerase binding and DNA polymerization.
Resumo:
Gas separation membranes of high CO2 permeability and selectivity have great potential in both natural gas sweetening and carbon dioxide capture. Many modified PIM membranes results permselectivity above Robinson upper bound. The big problem that should be solved for these polymers to be commercialized is their aging through time. In high glassy polymeric membrane such as PIM-1 and its modifications, solubility selectivity has more contribution towards permselectivity than diffusivity selectivity. So in this thesis work pure and mixed gas sorption behavior of carbon dioxide and methane in three PIM-based membranes (PIM-1, TZPIM-1 and AO-PIM-1) and Polynonene membrane is rigorously studied. Sorption experiment is performed at different temperatures and molar fraction. Sorption isotherms found from the experiment shows that there is a decrease of solubility as the temperature of the experiment increases for both gases in all polymers. There is also a decrease of solubility due to the presence of the other gas in the system in the mixed gas experiments due to competitive sorption effect. Variation of solubility is more visible in methane sorption than carbon dioxide, which will make the mixed gas solubility selectivity higher than that of pure gas solubility selectivity. Modeling of the system using NELF and Dual mode sorption model estimates the experimental results correctly Sorption of gases in heat treated and untreated membranes show that the sorption isotherms don’t vary due to the application of heat treatment for both carbon dioxide and methane. But there is decrease in the diffusivity coefficient and permeability of pure gases due to heat treatment. Both diffusivity coefficient and permeability decreases with increasing of heat treatment temperature. Diffusivity coefficient calculated from transient sorption experiment and steady state permeability experiment is also compared in this thesis work. The results reveal that transient diffusivity coefficient is higher than steady state diffusivity selectivity.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics