949 resultados para ION DIP SPECTROSCOPY
Resumo:
Raman spectroscopy has become an attractive tool for the analysis of pharmaceutical solid dosage forms. In the present study it is used to ensure the identity of tablets. The two main applications of this method are release of final products in quality control and detection of counterfeits. Twenty-five product families of tablets have been included in the spectral library and a non-linear classification method, the Support Vector Machines (SVMs), has been employed. Two calibrations have been developed in cascade: the first one identifies the product family while the second one specifies the formulation. A product family comprises different formulations that have the same active pharmaceutical ingredient (API) but in a different amount. Once the tablets have been classified by the SVM model, API peaks detection and correlation are applied in order to have a specific method for the identification and allow in the future to discriminate counterfeits from genuine products. This calibration strategy enables the identification of 25 product families without error and in the absence of prior information about the sample. Raman spectroscopy coupled with chemometrics is therefore a fast and accurate tool for the identification of pharmaceutical tablets.
Resumo:
Fluorescence cystoscopy enhances detection of early bladder cancer. Water used to inflate the bladder during the procedure rapidly contains urine, which may contain fluorochromes. This frequently degradesfluorescence images. Samples of bladder washout fluid (BWF) or urine were collected (15 subjects). We studiedtheir fluorescence properties and assessed changes induced by pH (4 to 9) and temperature (15°C to 41°C).A typical fluorescence spectrum of BWF features a main peak (excitation/emission: 320∕420 nm, FWHM =50∕100 nm) and a weaker (5% to 20% of main peak intensity), secondary peak (excitation/emission: 455∕525 nm, FWHM = 80∕50 nm). Interpatient fluctuations of fluorescence intensity are observed. Fluorescence intensity decreases when temperature increases (max 30%) or pH values vary (max 25%). Neither approach is compatible with clinical settings. Fluorescence lifetime measurements suggest that 4-pyridoxic acid/riboflavin is the most likely molecule responsible for urine's main/secondary fluorescence peak. Our measurements give an insight into the spectroscopy of the detrimental background fluorescence. This should be included in the optical design of fluorescence cystoscopes. We estimate that restricting the excitation range from 370-430 nm to 395-415 nm would reduce the BWF background by a factor 2.
Resumo:
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.
Resumo:
Raman spectroscopy has become a widespread technique for the analysis ofpharmaceutical solid forms. The application proposed here is the investigationof counterfeit medicines. This serious global issue requires quick and accurateidentification methods to fight against this phenomenon. Thanks to its chemicalselectivity, rapidity of analysis and potential of generating repeatable spectralprofiles, Raman spectroscopy presents distinct advantages for the analysis ofcounterfeits. Combined with chemometric tools, the technique enablesthe detection, the determination of chemical composition and the profiling ofmedicine counterfeits.
Resumo:
Measurement of the hepatic oxygenation index by near infrared spectroscopy is a suitable method to estimate the oxygenation and can be a non-invasive means to continuously monitor tissue perfusion and to detect early haemodynamic disturbances in critically ill children.
Resumo:
Background: The glycosylated hemoglobin (HbA1c) is used to help monitor the degree of a diabetic’s hyperglycemia. Security and accuracy of the methods used in its detection are affected by variants forms of Hb or elevations in levels of Fetal Hb (HbF). These interference are the result of a change in the haemoglobin total net charge of the variant due of a substitution of one amino acid in the remaining amino terminal of the beta chain. International Standardization for HbA1c values (NGSP) not include interference assessment as part of the certification program. Therefore, the effect of each variant or the lifting of the HbF on HbA1c result should be examined in each sample depending on the detected variant and the method used for the detection of the same. The objectives were: to describe the possible variants of Hb and their interference in HbA1c measurement by our method, after the implementation of a computer program for their detection. To identify some variants detected by chromatography liquid ion exchange high resolution (HPLC) with DNA molecular sequencing.
Resumo:
A series of InxAl1-xAs samples (0.51≪x≪0.55)coherently grown on InP was studied in order to measure the band-gap energy of the lattice matched composition. As the substrate is opaque to the relevant photon energies, a method is developed to calculate the optical absorption coefficient from the photoluminescence excitation spectra. The effect of strain on the band-gap energy has been taken into account. For x=0.532, at 14 K we have obtained Eg0=1549±6 meV
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.
Resumo:
Échelle(s) : [ca 1:365 000], échelle de 4 lieues de poste de France [= 4,7 cm]
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, using the standard tools of forensic DNA profiling (i.e., STR markers), the profile of the minor contributor in mixed DNA stains cannot be successfully detected if its quantitative share of DNA is less than 10% of the mixed trace. This is due to the fact that the major contributor's profile "masks" that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP) linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed [1]. These novel markers are called DIP-STR markers. This paper compares, from a statistical and forensic perspective, the potential usefulness of these novel DIP-STR markers (i) with traditional STR markers in cases of moderately unbalanced mixtures, and (ii) with Y-STR markers in cases of female-male mixtures. This is done through a comparison of the distribution of 100,000 likelihood ratio values obtained using each method on simulated mixtures. This procedure is performed assuming, in turn, the prosecution's and the defence's point of view.
Resumo:
Background. Age is an important risk factor for perioperative cerebral complications such as stroke, postoperative cognitive dysfunction, and delirium. We explored the hypothesis that intraoperative cerebrovascular autoregulation is less efficient and brain tissue oxygenation lower in elderly patients, thus, increasing the vulnerability of elderly brains to systemic insults such as hypotension.Methods. We monitored intraoperative cerebral perfusion in 50 patients aged 18-40 and 77 patients >65 yr at two Swiss university hospitals. Mean arterial pressure (MAP) was measured continuously using a plethysmographic method. An index of cerebrovascular autoregulation (Mx) was calculated based on changes in transcranial Doppler flow velocity due to changes in MAP. Cerebral oxygenation was assessed by the tissue oxygenation index (TOI) using near-infrared spectroscopy. End-tidal CO(2), O(2), and sevoflurane concentrations and peripheral oxygen saturation were recorded continuously. Standardized anaesthesia was administered in all patients (thiopental, sevoflurane, fentanyl, atracurium).Results. Autoregulation was less efficient in patients aged >65 yr [by 0.10 (SE 0.04; P=0.020)] in a multivariable linear regression analysis. This difference was not attributable to differences in MAP, end-tidal CO2, or higher doses of sevoflurane. TOI was not significantly associated with age, sevoflurane dose, or Mx but increased with increasing flow velocity [by 0.09 (SE 0.04; P=0.028)] and increasing MAP [by 0.11 (SE 0.05; P=0.043)].Conclusions. Our results do not support the hypothesis that older patients' brains are more vulnerable to systemic insults. The difference of autoregulation between the two groups was small and most likely clinically insignificant.
Resumo:
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
CONTEXT: Recent magnetic resonance imaging studies have attempted to relate volumetric brain measurements in early schizophrenia to clinical and functional outcome some years later. These studies have generally been negative, perhaps because gray and white matter volumes inaccurately assess the underlying dysfunction that might be predictive of outcome. OBJECTIVE: To investigate the predictive value of frontal and temporal spectroscopy measures for outcome in patients with first-episode psychoses. DESIGN: Left prefrontal cortex and left mediotemporal lobe voxels were assessed using proton magnetic resonance spectroscopy to provide the ratio of N-acetylaspartate (NAA) and choline-containing compounds to creatine and phosphocreatine (Cr) (NAA/Cr ratio). These data were used to predict outcome at 18 months after admission, as assessed by a systematic medical record audit. SETTING: Early psychosis clinic. PARTICIPANTS: Forty-six patients with first-episode psychosis. MAIN OUTCOME MEASURES: We used regression models that included age at imaging and duration of untreated psychosis to predict outcome scores on the Global Assessment of Functioning Scale, Clinical Global Impression scales, and Social and Occupational Functional Assessment Scale, as well as the number of admissions during the treatment period. We then further considered the contributions of premorbid function and baseline level of negative symptoms. RESULTS: The only spectroscopic predictor of outcome was the NAA/Cr ratio in the prefrontal cortex. Low scores on this variable were related to poorer outcome on all measures. In addition, the frontal NAA/Cr ratio explained 17% to 30% of the variance in outcome. CONCLUSIONS: Prefrontal neuronal dysfunction is an inconsistent feature of early psychosis; rather, it is an early marker of poor prognosis across the first years of illness. The extent to which this can be used to guide treatment and whether it predicts outcome some years after first presentation are questions for further research.