976 resultados para INITIAL CONDITION
Resumo:
A series of acoustic emission (AE) experiments of rock failure have been conducted under cyclic load in tri-axial stress tests. To simulate the hypocenter condition the specimens are loaded by the combined action of a constant stress, intended to simulate
Resumo:
Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then investigate whether the Oliver-Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answer questions raised in recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.
Resumo:
It is paramount that any child or adolescent with a suspected disorder of sex development (DSD) is assessed by an experienced clinician with adequate knowledge about the range of conditions associated with DSD. If there is any doubt, the case should be discussed with the regional team. In most cases, particularly in the case of the newborn, the paediatric endocrinologist within the regional DSD team acts as the first point of contact. The underlying pathophysiology of DSD and the strengths and weaknesses of the tests that can be performed should be discussed with the parents and affected young person and tests undertaken in a timely fashion. This clinician should be part of a multidisciplinary team experienced in management of DSD and should ensure that the affected person and parents are as fully informed as possible and have access to specialist psychological support. Finally, in the field of rare conditions, it is imperative that the clinician shares the experience with others through national and international clinical and research collaboration. © 2011 Blackwell Publishing Ltd.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.
Resumo:
Los quesos de cabra, con mejores cualidades funcionales provienen de leche de cabras en pastoreo, esto obedece al mayor contenido de ácidos grasos ω-3 y ω-6 en una relación óptima para la salud, sumado a un menor contenido de grasa y colesterol. Saborizar quesos con especias, otorga beneficios sensoriales y saludables al producto. Las especias son usadas para realzar el flavor de los alimentos además presentan beneficios antioxidantes. Sin embargo, se reportaron evidencias del doble papel de los flavonoides como antioxidantes o prooxidantes en función de la concentración de uso. El objetivo del trabajo es evaluar el efecto de distintas concentraciones de especias aromáticas con capacidad antioxidante, frente a las reacciones de deterioro que ocurren en el almacenamiento de quesos de cabra. Se estudió la actividad antirradicalaria (AAR) de 18 especias. Para evaluar la actividad antioxidante (AA0) se usó la técnica de desaparición de un radical libre estable el 2,2-difenil-1-picril hidrazilo (DPPH) y se calculó la AAR porcentual. Definido el queso base estándar (control), se ensayaron tres variedades con especies, elegidas de entre las de mayor AAR (orégano, romero y tomillo) y se adicionaron con las concentraciones 0,4 – 1 % p/p. Estos, fueron madurados 30 días y almacenados 7 meses a 4 °C. Se analizaron cada 4 semanas. Se realizaron pruebas sensoriales de aceptabilidad con 60 consumidores de queso (condición), usando planillas, con escala hedónica. Se trabajó sobre los lípidos extraídos de los quesos. El rancidez y deterioro fueron evaluados con análisis de acidez; índice peróxido y sustancias reactivas al ácido TBA. Los resultados se compararon con el comportamiento sensorial del producto en el tiempo de almacenamiento. En los quesos adicionados al 1 %, la acidez se incrementó con el almacenamiento. El máximo valor corresponde al queso con orégano (3,72 % de ac. láctico a los 126 días). En el control, la acidez inicial fue inferior y alcanzó 1,05 g de ác. láctico % a los 166 días. El IP más alto corresponde a los quesos con orégano al 1% , resultado que se contrapone a la actividad antirradicalaria de esta especia. Al 0,4 %, tanto el IP como el número de TBA son menores en quesos adicionados, respecto del control. En los quesos de cabra analizados las especias agregadas al 1% ejercieron acción prooxidante, mientras que al ser agregadas al 0,4% la acción es antioxidante, lo que indica la importancia de la selección de concentraciones adecuadas.
Resumo:
The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the self-assembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force, while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.
Resumo:
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.
Resumo:
This paper studies the surface melting in the atmosphere by YAG laser-guided micro-arc discharge. In three kinds of surface conditions (free, oiled, and polyethylene covered), we try to control the diameter and the power density of discharge pit. It is found that the power density of 3 x 10(6) W/cm(2) of discharge pit on the oiled surface is moderate to form the melted layer thicker than that of the others, adapting to strengthen the surface of material, and the power density of 1.07 x 10(7) W/cm(2) of discharge pit on the polyethylene-covered surface is highest to form the deepest discharge pit among them, adapting to remove the material.
Resumo:
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.