968 resultados para INDUCED CARDIAC PROTECTION
Resumo:
Stimulation of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B (PKB) is implicated in the regulation of protein synthesis in various cells. One mechanism involves PI3K/PKB-dependent phosphorylation of 4E-BP1, which dissociates from eIF4E, allowing initiation of translation from the 7-methylGTP cap of mRNAs. We examined the effects of insulin and H(2)O(2) on this pathway in neonatal cardiac myocytes. Cardiac myocyte protein synthesis was increased by insulin, but was inhibited by H(2)O(2). PI3K inhibitors attenuated basal levels of protein synthesis and inhibited the insulin-induced increase in protein synthesis. Insulin or H(2)O(2) increased the phosphorylation (activation) of PKB through PI3K, but, whereas insulin induced a sustained response, the response to H(2)O(2) was transient. 4E-BP1 was phosphorylated in unstimulated cells, and 4E-BP1 phosphorylation was increased by insulin. H(2)O(2) stimulated dephosphorylation of 4E-BP1 by increasing protein phosphatase (PP1/PP2A) activity. This increased the association of 4E-BP1 with eIF4E, consistent with H(2)O(2) inhibition of protein synthesis. The effects of H(2)O(2) were sufficient to override the stimulation of protein synthesis and 4E-BP1 phosphorylation induced by insulin. These results indicate that PI3K and PKB are important regulators of protein synthesis in cardiac myocytes, but other factors, including phosphatase activity, modulate the overall response.
Resumo:
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.
Resumo:
Studies in non-cardiomyocytic cells have shown that phosphorylation of the Bcl-2 family protein Bad on Ser-112, Ser-136 and Ser-155 decreases its pro-apoptotic activity. Both phenylephrine (100 microM) and the cell membrane-permeating cAMP analog, 8-(4-chlorophenylthio)-cAMP (100 microM), protected against 2-deoxy-D-glucose-induced apoptosis in neonatal rat cardiac myocytes as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). In cardiac myocytes, phenylephrine primarily stimulates the alpha-adrenoceptor, but, at high concentrations (100 microM), it also increases the activity of the cAMP-dependent protein kinase, protein kinase A (PKA) through the beta-adrenoceptor. Phenylephrine (100 microM) promoted rapid phosphorylation of Bad(Ser-112) and Bad(Ser-155), though we were unable to detect phosphorylation of Bad(Ser-136). Phosphorylation of Bad(Ser-112) was antagonized by either prazosin or propranolol, indicating that this phosphorylation required stimulation of both alpha(1)- and beta-adrenoceptors. Phosphorylation of Bad(Ser-155) was antagonized only by propranolol and was thus mediated through the beta-adrenoceptor. Inhibitor studies and partial purification of candidate kinases by fast protein liquid chromatography showed that the p90 ribosomal S6 kinases, p90RSK2/3 [which are activated by the extracellular signal-regulated kinases 1 and 2 (ERK1/2)] directly phosphorylated Bad(Ser-112), whereas the PKA catalytic subunit directly phosphorylated Bad(Ser-155). However, efficient phosphorylation of Bad(Ser-112) also required PKA activity. These data suggest that, although p90RSK2/3 phosphorylate Bad(Ser-112) directly, phosphorylation of this site is enhanced by phosphorylation of Bad(Ser-155). These phosphorylations potentially diminish the pro-apoptotic activity of Bad and contribute to the cytoprotective effects of phenylephrine and 8-(4-chlorophenylthio)-cAMP.
Resumo:
Cardiac hypertrophy, an important adaptational response, is associated with up-regulation of the immediate early gene, c- jun, which encodes the c-Jun transcription factor. c-Jun may feed back to up-regulate its own transcription and, since the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs) phosphorylate c-Jun(Ser-63/73) to increase its transactivating activity, JNKs are thought to be the principal factors involved in c- jun up-regulation. Hypertrophy in primary cultures of cardiac myocytes is induced by endothelin-1, phenylephrine or PMA, probably through activation of one or more of the MAPK family. These three agonists increased c- jun mRNA with the rank order of potency of PMA approximately endothelin-1>phenylephrine. Up-regulation of c- jun mRNA by endothelin-1 was attenuated by inhibitors of protein kinase C (GF109203X) and the extracellular signal-regulated kinase (ERK) cascade (PD98059 or U0126), but not by inhibitors of the JNK (SP600125) or p38-MAPK (SB203580) cascades. Hyperosmotic shock (0.5 M sorbitol) powerfully activates JNKs, but did not increase c- jun mRNA. These data suggest that ERKs, rather than JNKs, are required for c- jun up-regulation. However, endothelin-1 and phenylephrine induced greater up-regulation of c-Jun protein than PMA and phosphorylation of c-Jun(Ser-63/73) correlated with the level of c-Jun protein. Up-regulation of c-Jun protein by endothelin-1 was attenuated by inhibitors of protein kinase C and the ERK cascade, probably correlating with a primary input of ERKs into transcription. In addition, SP600125 inhibited the phosphorylation of c-Jun(Ser-63/73), attenuated the increase in c-Jun protein induced by endothelin-1 and increased the rate of c-Jun degradation. Thus whereas ERKs are the principal MAPKs required for c- jun transcription, JNKs are necessary to stabilize c-Jun for efficient up-regulation of the protein.
Resumo:
Oxidative stress promotes cardiac myocyte apoptosis through the mitochondrial death pathway. Since Bcl-2 family proteins are key regulators of apoptosis, we examined the effects of H2O2 on the expression of principal Bcl-2 family proteins (Bcl-2, Bcl-xL, Bax, Bad) in neonatal rat cardiac myocytes. Protein expression was assessed by immunoblotting. Bcl-2, Bax, and Bad were all down-regulated in myocytes exposed to 0.2 mm H2O2, a concentration that induces apoptosis. In contrast, although Bcl-xL levels initially declined, the protein was re-expressed from 4-6 h. Bcl-xL mRNA was up-regulated from 2 to 4 h in neonatal rat or mouse cardiac myocytes exposed to H2O2, consistent with the re-expression of protein. Four different untranslated first exons have been identified for the Bcl-x gene (exons 1, 1B, 1C, and 1D, where exon 1 is the most proximal and exon 1D the most distal to the coding region). All were detected in mouse or rat neonatal cardiac myocytes, but exon 1D was not expressed in adult mouse hearts. In neonatal mouse or rat cardiac myocytes, H2O2 induced the expression of exons 1B, 1C, and 1D, but not exon 1. These data demonstrate that the Bcl-x gene is selectively responsive to oxidative stress, and the response is mediated through distal promoter regions.
Resumo:
The hypertrophic agonist endothelin-1 rapidly but transiently activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade (and other signalling pathways) in cardiac myocytes, but the events linking this to hypertrophy are not understood. Using Affymetrix rat U34A microarrays, we identified the short-term (2-4 h) changes in gene expression induced in neonatal myocytes by endothelin-1 alone or in combination with the ERK1/2 cascade inhibitor, U0126. Expression of 15 genes was significantly changed by U0126 alone, and expression of an additional 78 genes was significantly changed by endothelin-1. Of the genes upregulated by U0126, four are classically induced through the aryl hydrocarbon receptor (AhR) by dioxins suggesting that U0126 activates the xenobiotic response element in cardiac myocytes potentially independently of effects on ERK1/2 signalling. The 78 genes showing altered expression with endothelin-1 formed five clusters: (i) three clusters showing upregulation by endothelin-1 according to time course (4 h > 2 h; 2 h > 4 h; 2 h approximately 4 h) with at least partial inhibition by U0126; (ii) a cluster of 11 genes upregulated by endothelin-1 but unaffected by U0126 suggesting regulation through signalling pathways other than ERK1/2; (iii) a cluster of six genes downregulated by endothelin-1 with attenuation by U0126. Thus, U0126 apparently activates the AhR in cardiac myocytes (which must be taken into account in protracted studies), but careful analysis allows identification of genes potentially regulated acutely via the ERK1/2 cascade. Our data suggest that the majority of changes in gene expression induced by endothelin-1 are mediated by the ERK1/2 cascade.
Resumo:
Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality.
Resumo:
Heart regeneration after myocardial infarction (MI) can occur after cell therapy, but the mechanisms, cell types and delivery methods responsible for this improvement are still under investigation. In the present study, we evaluated the impact of systemic delivery of bone marrow cells (BMC) and cultivated mesenchymal stem cells (MSC) on cardiac morphology, function and mortality in spontaneously hypertensive rats (SHR) submitted to coronary occlusion. Female syngeneic adult SHR, submitted or not (control group; C) to MI, were treated with intravenous injection of MSC (MI + MSC) or BMC (MI + BM) from male rats and evaluated after 1, 15 and 30 days by echocardiography. Systolic blood pressure (SBP), functional capacity, histology, mortality rate and polymerase chain reaction for the Y chromosome were also analysed. Myocardial infarction induced a decrease in SBP and BMC, but not MSC, prevented this decrease. An improvement in functional capacity and ejection fraction (38 +/- 4, 39 +/- 3 and 58 +/- 2% for MI, MI + MSC and MI + BM, respectively; P < 0.05), as well as a reduction of the left ventricle infarcted area, were observed in rats from the MI + BM group compared with the other three groups. Treated animals had a significantly reduced lesion tissue score. The mortality rate in the C, MI + BM, MI + MSC and MI groups was 0, 0, 16.7 and 44.4%, respectively (P < 0.05 for the MI + MSC and MI groups compared with the C and MI + BM groups). The results of the present study suggest that systemic administration of BMC can improve left ventricular function, functional capacity and, consequently, reduce mortality in an animal model of MI associated with hypertension. We speculate that the cells transiently home to the myocardium, releasing paracrine factors that recruit host cells to repair the lesion.
Resumo:
P>1. Impairmant of baroreflex sensitivity (BRS) has been implicated in the reduction of heart rate variability (HRV) and in the increased risk of death after myocardial infarction (MI). In the present study, we investigated whether the additional impairment in BRS induced by sinoaortic baroreceptor denervation (SAD) in MI rats is associated with changes in the low-frequency (LF) component of HRV and increased mortality rate. 2. Rats were randomly divided into four groups: control, MI, denervated (SAD) and SAD + MI rats. Left ventricular (LV) function was evaluated by echocardiography. Autonomic components were assessed by power spectral analysis and BRS. 3. Myocardial infarction (90 days) reduced ejection fraction (by similar to 42%) in both the MI and SAD + MI groups; however, an increase in LV mass and diastolic dysfunction were observed only in the SAD + MI group. Furthermore, BRS, HRV and the LF power of HRV were reduced after MI, with an exacerbated reduction seen in SAD + MI rats. The LF component of blood pressure variability (BPV) was increased in the MI, SAD and SAD + MI groups compared with the control group. Mortality was higher in the MI groups compared with the non-infarcted groups, with an additional increase in mortality in the SAD + MI group compared with the MI group. Correlations were obtained between BRS and the LF component of HRV and between LV mass and the LF component of BPV. 4. Together, the results indicate that the abolishment of BRS induced by SAD in MI rats further reduces the LF band of HRV, resulting in a worse cardiac remodelling and increased mortality in these rats. These data highlight the importance of this mechanism in the prognosis of patients after an ischaemic event.
Resumo:
Evidence of mild hypertension in women and female rats and our preliminary observation showing that training is not effective to reduce pressure in female as it does in male spontaneously hypertensive rats (SHR) prompt us to investigate the effects of gender on hemodynamic pattern and microcirculatory changes induced by exercise training. Female SHR and normotensive controls (Wistar- Kyoto rats) were submitted to training (55% VO2 peak; 3 months) or kept sedentary and instrumented for pressure and hindlimb flow measurements at rest and during exercise. Heart, kidney, and skeletal muscles (locomotor/ nonlocomotor) were processed for morphometric analysis of arterioles, capillaries, and venules. High pressure in female SHR was accompanied by an increased arteriolar wall: lumen ratio in the kidney (+30%; P < 0.01) but an unchanged ratio in the skeletal muscles and myocardium. Female SHR submitted to training did not exhibit further changes on the arteriolar wall: lumen ratio and pressure, showing additionally increased hindlimb resistance at rest (+29%; P < 0.05). On the other hand, female SHR submitted to training exhibited increased capillary and venular densities in locomotor muscles (+50% and 2.3- fold versus sedentary SHR, respectively) and normalized hindlimb flow during exercise hyperemia. Left ventricle pressure and weight were higher in SHR versus WKY rats, but heart performance (positive dP/dt(max) and negative dP/dt(max)) was not changed by hypertension or training, suggesting a compensated heart function in female SHR. In conclusion, the absence of training- induced structural changes on skeletal muscle and myocardium arterioles differed from changes observed previously in male SHR, suggesting a gender effect. This effect might contribute to the lack of pressure fall in trained female SHRs.
Resumo:
Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by proinflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) andC/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. Journal of Endocrinology (2010) 206, 183-193
Resumo:
In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-alpha (TNF-alpha) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-alpha inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O(2) consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O(2) consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-alpha signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.
Resumo:
Background and aim: given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. Methods and results: Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. Conclusion: Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Spleen or spleen plus bone marrow cells from (BALB/c x C57Bl/6)F1 donors were transferred into BALB/c recipients 21 days before skin or cardiac transplantation. Prolonged graft survival was observed on recipients treated with the mixture of donor-derived cells as compared to those treated with spleen cells alone. We evaluated the expression of CD45RB and CD44 by splenic CD4(+) and CD8(+) T cells 7 and 21 days after donor cell transfer. The populations of CD8(+)CD45RB(low) and CD8(+)CD44(high) cells were significantly decreased in mice pre-treated with donor spleen and bone marrow cells as compared to animals treated with spleen cells only, although these cells expanded in both groups when compared to an earlier time-point. No differences were observed regarding CD4+ T cell population when recipients of donor-derived cells were compared. An enhanced production of IL-10 was observed seven days after transplantation in the supernatants of spleen cell cultures of mice treated with spleen and bone marrow cells. Taken together these data suggest that donor-derived bone marrow cells modulate the sensitization of the recipient by semi-allogeneic spleen cells in part by delaying the generation of activated/memory CD8(+) T cells leading to enhanced graft survival. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.