602 resultados para Gaze
Resumo:
Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel.
Resumo:
Einleitung: Im Zusammenhang mit der Leistungsdienlichkeit langer finaler Fixation (quiet eye, QE) wird vermutet, dass Leistungsverbesserungen nur für eine optimale Dauer zu beobachten sein sollten, also auch bei „überlangen“ QE-Dauern die Leistung wieder abnimmt (u.a. Janelle et al., 2000; Klostermann, 2014). Jedoch liegen zu dieser Vermutung bislang keine empirischen Befunde vor, so dass in der hier präsentierten Studie Präzisionsleistung in einer Wurfaufgabe in Abhängigkeit von (auch) sehr langen experimentell kontrollierten QE-Dauern untersucht wurde. Methode: In einem Within-subject-Design hatten 20 Sportstudierende unter acht verschiedenen QE-Bedingungen (Onset in 400-ms-Schritten von -3200 ms bis -400 ms vor Bewegungsbeginn; 16 Versuche pro Bedingung in randomisierter Abfolge) mit retro-reflektierenden Bällen auf eine Großleinwand projizierte Zielscheiben möglichst mittig zu treffen. Die QE-Manipulation erfolgte über eine an den Bewegungsbeginn gebundene Zielscheibeneinblendung samt Wurfrhythmisierung durch Tonvorgaben. Aus den mit einem Vicon-T20-System (200 Hz) sowie einem integrierten mobilen Eyetracker (EyeSeeCam, 220 Hz) erhobenen Daten wurden die QE-Dauer (ms) und die Wurfleistung (radialer Fehler, mm) als abhängige Variablen berechnet und varianzanalytisch auf Unterschiede untersucht. Resultate und Diskussion: Für die QE-Dauer wurde ein signifikanter Haupteffekt gefunden, F(7, 133) = 38.4, p < .01, ηp2 = .67, mit zumindest tendenziellen (-2000 ms vs. -2400 ms, -2800 ms vs. -3200 ms), größtenteils aber signifikanten QE-Anstiegen gemäß der experimentellen Manipulation (alle ps < .01), obgleich die jeweils angezielten QE-Dauern nicht erreicht und zum Teil deutlich unterschritten wurden (tatsächliche relativ zur angezielten Dauer im Mittel 59.95 %). Für den radialen Fehler ergab sich ein signifikanter Haupteffekt, F(7, 133) = 8.5, p < .01, ηp2 = .31, welcher durch signifikant schlechtere Leistungen bei den Onsets -400 ms und -800 ms gegenüber allen anderen Onsets erklärt wird (alle ps < .05; ausgenommen -400 ms vs. -800 ms und -800 ms vs. -2400 ms). Somit wurde der „klassische“ QE-Effekt schlechterer Leistungen infolge kurzer QE-Dauern repliziert; die Vermutung einer Leistungsverschlechterung bei überlangen QE-Dauern konnte jedoch – zumindest unter den infolge der Manipulation tatsächlich erzielten Werten – nicht untermauert werden. Literatur: Klostermann, A. (2014). Finale Fixationen, sportmotorische Leistung und eine Inhibitionshypothese: Mechanismen des „Quiet Eye“, Sportwissenschaft, 44, 49-59. Janelle, C. M., Hillman, C. H., Apparies, R. J., Murray, N. P., Meili, L., Fallon, E. A. & Hatfield, B. D. (2000). Expertise differences in cortical activation and gaze behavior during rifle shooting. Journal of Sport & Exercise Psychology, 22, 167-182.
Resumo:
BackgroundNiemann-Pick disease type C (NP-C) is a rare autosomal recessive disorder of lysosomal cholesterol transport. The objective of this retrospective cohort study was to critically analyze the onset and time course of symptoms, and the clinical diagnostic work-up in the Swiss NP-C cohort.MethodsClinical, biochemical and genetic data were assessed for 14 patients derived from 9 families diagnosed with NP-C between 1994 and 2013. We retrospectively evaluated diagnostic delays and period prevalence rates for neurological, psychiatric and visceral symptoms associated with NP-C disease. The NP-C suspicion index was calculated for the time of neurological disease onset and the time of diagnosis.ResultsThe shortest median diagnostic delay was noted for vertical supranuclear gaze palsy (2y). Ataxia, dysarthria, dysphagia, spasticity, cataplexy, seizures and cognitive decline displayed similar median diagnostic delays (4¿5y). The longest median diagnostic delay was associated with hepatosplenomegaly (15y). Highest period prevalence rates were noted for ataxia, dysarthria, vertical supranuclear gaze palsy and cognitive decline. The NP-C suspicion index revealed a median score of 81 points in nine patients at the time of neurological disease onset which is highly suspicious for NP-C disease. At the time of diagnosis, the score increased to 206 points.ConclusionA neurologic-psychiatric disease pattern represents the most characteristic clinical manifestation of NP-C and occurs early in the disease course. Visceral manifestation such as isolated hepatosplenomegaly often fails recognition and thus highlights the importance of a work-up for lysosomal storage disorders. The NP-C suspicion index emphasizes the importance of a multisystem evaluation, but seems to be weak in monosymptomatic and infantile NP-C patients.
Resumo:
New-onset impairment of ocular motility will cause incomitant strabismus, i.e., a gaze-dependent ocular misalignment. This ocular misalignment will cause retinal disparity, that is, a deviation of the spatial position of an image on the retina of both eyes, which is a trigger for a vergence eye movement that results in ocular realignment. If the vergence movement fails, the eyes remain misaligned, resulting in double vision. Adaptive processes to such incomitant vergence stimuli are poorly understood. In this study, we have investigated the physiological oculomotor response of saccadic and vergence eye movements in healthy individuals after shifting gaze from a viewing position without image disparity into a field of view with increased image disparity, thus in conditions mimicking incomitance. Repetitive saccadic eye movements into a visual field with increased stimulus disparity lead to a rapid modification of the oculomotor response: (a) Saccades showed immediate disconjugacy (p < 0.001) resulting in decreased retinal image disparity at the end of a saccade. (b) Vergence kinetics improved over time (p < 0.001). This modified oculomotor response enables a more prompt restoration of ocular alignment in new-onset incomitance.
Resumo:
PURPOSE Dyslexia is the most common developmental reading disorder that affects language skills. Latent strabismus (heterophoria) has been suspected to be causally involved. Even though phoria correction in dyslexic children is commonly applied, the evidence in support of a benefit is poor. In order to provide experimental evidence on this issue, we simulated phoria in healthy readers by modifying the vergence tone required to maintain binocular alignment. METHODS Vergence tone was altered with prisms that were placed in front of one eye in 16 healthy subjects to induce exophoria, esophoria, or vertical phoria. Subjects were to read one paragraph for each condition, from which reading speed was determined. Text comprehension was tested with a forced multiple choice test. Eye movements were recorded during reading and subsequently analyzed for saccadic amplitudes, saccades per 10 letters, percentage of regressive (backward) saccades, average fixation duration, first fixation duration on a word, and gaze duration. RESULTS Acute change of horizontal and vertical vergence tone does neither significantly affect reading performance nor reading associated eye movements. CONCLUSION Prisms in healthy subjects fail to induce a significant change of reading performance. This finding is not compatible with a role of phoria in dyslexia. Our results contrast the proposal for correcting small angle heterophorias in dyslexic children.
Resumo:
In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.
Resumo:
In the present study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants’ dart throwing performance and accompanying gaze behavior. According to the strength model of self-control the most important aspect of self-control is attention regulation (Schmeichel & Baumeister, 2010). As higher levels of state anxiety are associated with impaired attention regulation (Nieuwenhuys & Oudejans, 2012) we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. A total of 28 right-handed students participated in our study (Mage = 23.4, SDage = 2.5; 10 female; no professional dart experience). Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. The task was performed while participants were positioned high and low on a climbing wall (i.e., with high and low levels of anxiety). In line with our expectations, a mixed-design ANOVA revealed that depleted participants in the high anxiety condition performed worse (p < .001) and displayed a shorter final fixation on bull’s eye (p < .01) than in the low anxiety condition, demonstrating that when one is depleted attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.
Resumo:
We investigated the neural mechanisms and the autonomic and cognitive responses associated with visual avoidance behavior in spider phobia. Spider phobic and control participants imagined visiting different forest locations with the possibility of encountering spiders, snakes, or birds (neutral reference category). In each experimental trial, participants saw a picture of a forest location followed by a picture of a spider, snake, or bird, and then rated their personal risk of encountering these animals in this context, as well as their fear. The greater the visual avoidance of spiders that a phobic participant demonstrated (as measured by eye tracking), the higher were her autonomic arousal and neural activity in the amygdala, orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and precuneus at picture onset. Visual avoidance of spiders in phobics also went hand in hand with subsequently reduced cognitive risk of encounters. Control participants, in contrast, displayed a positive relationship between gaze duration toward spiders, on the one hand, and autonomic responding, as well as OFC, ACC, and precuneus activity, on the other hand. In addition, they showed reduced encounter risk estimates when they looked longer at the animal pictures. Our data are consistent with the idea that one reason for phobics to avoid phobic information may be grounded in heightened activity in the fear circuit, which signals potential threat. Because of the absence of alternative efficient regulation strategies, visual avoidance may then function to down-regulate cognitive risk evaluations for threatening information about the phobic stimuli. Control participants, in contrast, may be characterized by a different coping style, whereby paying visual attention to potentially threatening information may help them to actively down-regulate cognitive evaluations of risk.
Resumo:
Over recent years, it has repeatedly been shown that optimal gaze strategies enhance motor control (e.g., Foulsham, 2015). However, little is known, whether, vice versa, visual performance can be improved by optimized motor control. Consequently, in two studies, we investigated visual performance as a function of motor control strategies and task parameters, respectively. In Experiment 1, 72 participants were tested on visual acuity (Landolt) and contrast sensitivity (Grating), while standing in two different postures (upright vs. squat) on a ZEPTOR-platform that vibrated at four different frequencies (0, 4, 8, 12 Hz). After each test, perceived exertion (Borg) was assessed. Significant interactions were revealed for both tests, Landolt: F(3,213)=13.25, p<.01, ηp2=.16, Grating: F(3,213)=4.27, p<.01, ηp2=.06, elucidating a larger loss of acuity/contrast sensitivity with increasing frequencies for the upright compared with the squat posture. For perceived exertion, however, a diametrical interaction for frequency was found for acuity, F(3,213)=7.45, p<.01, ηp2=.09, and contrast sensitivity, F(3,213)=7.08, p < .01, ηp2=.09, substantiating that the impaired visual performance cannot be attributed to exertion. Consequently, the squat posture could permit better head and, hence, gaze stabilization. In Experiment 2, 64 participants performed the same tests while standing in a squat position on a ski-simulator, which vibrated with two different frequencies (2.4, 3.6 Hz) and amplitudes (50, 100 mm) in a predictable or unpredictable manner. Control strategies were identified by tracking segmental motion, which allows to derive damping characteristics. Considerable main effects were found for frequency, all F’s(1,52)>10.31, all p’s<.01, all ηp2’s>.16, as well as, in the acuity test, for predictability, F(1,52)=10.31, p<.01, ηp2=.17, and by tendency for amplitude, F(1,52)=3.53, p=.06, ηp2=.06. A significant correlation between the damping amplitude in the knee joint and the performance drop in visual acuity, r=-.97, p<.001, again points towards the importance of motor control strategies to maintain optimal visual performance.
Resumo:
High precision in motor skill performance, in both sport and other domains (e.g. surgery and aviation), requires the efficient coupling of perceptual inputs (e.g. vision) and motor actions. A particular gaze strategy, which has received much attention within the literature, has been shown to predict both inter- (expert vs. novice) and intra-individual (successful vs. unsuccessful) motor performance (see Vine et al., 2014). Vickers (1996) labelled this phenomenon the quiet eye (QE) which is defined as the final fixation before the initiation of the crucial phase of movement. While the positive influence of a long QE on accuracy has been revealed in a range of different motor skills, there is a growing number of studies suggesting that the relationship between QE and motor performance is not entirely monotonic. This raises interesting questions regarding the QE’s purview, and the theoretical approaches explaining its functionality. This talk aims to present an overview of the issues described above, and to discuss contemporary research and experimental approaches to examining the QE phenomenon. In the first part of the talk Dr. Vine will provide a brief and critical review of the literature, highlighting recent empirical advancements and potential directions for future research. In the second part, Dr. Klostermann will communicate three different theoretical approaches to explain the relationship between QE and motor performance. Drawing upon aspects of all three of these theoretical approaches, a functional inhibition role for the QE (related to movement parameterisation) will be proposed.
Resumo:
Choking under pressure describes the phenomenon of people performing well below their expected standard under circumstances where optimal performance is crucial. One of the prevailing explanations for choking is that pressure increases the conscious attention to the underlying processes of the performer's task execution, thereby disrupting what would normally be a relatively automatic process. However, research on choking has focused mainly on the influence of pressure on motor performance, typically overlooking how it might alter the way that vision is controlled when performing these motor actions. In this article we ask whether the visual component of expert motor-skill execution is susceptible to choking much like the motor component is thought to be. To do so, we draw heavily on empirical findings from studies of sporting expertise, in particular focussing on the role of gaze in three types of visually-guided actions: interceptive actions, aiming tasks, and anticipatory skill. For each of these skills we evaluate the nature of the expert advantage, discuss the role of consciousness in their control, examine the potential impact of pressure on task performance, and consider interventions designed to reduce the likelihood of choking when performing these tasks
Resumo:
BACKGROUND Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. METHODS The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. RESULTS Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). CONCLUSIONS This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.
Resumo:
Künstliches Vitamin C ist heute ein Massenprodukt. Dass sich Ascorbinsäure seit ihrer Erfindung 1933 zu einem alltäglichen Konsumgut mausern konnte, ist weniger durch ihr medizinisches Potential zu erklären, sondern verdankt sich vielmehr einem dynamischen Zusammenspiel von Produktion, Vermarktung und Gesundheitspolitik. Der Beitrag fokussiert insbesondere auf die komplexen Interaktionen zwischen Gesundheitskonzepten, diagnostischen Instrumenten und ärztlichem Blick. Dabei scheinen nicht nur die Differenzen zwischen „rein naturwissenschaftlichen“ und „ärztlich-biologischen“ Standpunkten auf, sondern es zeigt sich auch, dass Nahrungsbestandteile immer auch gesundheitspolitisch und ethisch aufgeladen sind.
Resumo:
The word 'palaver' is colloquially associated with useless verbiage and the nuisance of a tediously long, aimless and superfluous debate. At the same time, it insinuates an uncivilized culture of discourse beyond reason. Thus it appears to be of vaguely exotic origin but still firmly set in the European lexicon. Yet behind this contemporary meaning there lies a long history of linguistic and cultural transfers which is encased in a context of different usages of language and their intersections. By tracing the usage and semantics of 'palaver' in various encyclopaedias, glossaries and dictionaries of English, French, German, Portuguese and Spanish, the following article explores the rich history of this word. Moreover, it also regards the travelling semantics of the term 'palaver' as a process of cultural transfer that can be likened to the microcellular workings of a (retro)virus. Viral reproduction and evolution work through processes of transfer that enable the alteration of the host to adjust it to the replication and reproduction of the virus. In some cases, these processes also allow for the mutation or modification of the virus, making it suitable for transfer from one host to another. The virus is thus offered here as a vital model for cultural transfer: It not only encompasses the necessary adoption and adaption of contents or objects of cultural transfer in different contexts. It contributes to a conceptual understanding of the transferal residue that the transferred content is endowed with by its diversifying contexts. This model thereby surpasses an understanding of cultural transfer as literal translation or transmission: it conceptualizes cultural transfer as an agent of evolutionary processes, allowing for mutational effects of transfer as endowment.
Resumo:
Introduction: Although it seems plausible that sports performance relies on high-acuity foveal vision, it could be empirically shown that myoptic blur (up to +2 diopters) does not harm performance in sport tasks that require foveal information pick-up like golf putting (Bulson, Ciuffreda, & Hung, 2008). How myoptic blur affects peripheral performance is yet unknown. Attention might be less needed for processing visual cues foveally and lead to better performance because peripheral cues are better processed as a function of reduced foveal vision, which will be tested in the current experiment. Methods: 18 sport science students with self-reported myopia volunteered as participants, all of them regularly wearing contact lenses. Exclusion criteria comprised visual correction other than myopic, correction of astigmatism and use of contact lenses out of Swiss delivery area. For each of the participants, three pairs of additional contact lenses (besides their regular lenses; used in the “plano” condition) were manufactured with an individual overcorrection to a retinal defocus of +1 to +3 diopters (referred to as “+1.00 D”, “+2.00 D”, and “+3.00 D” condition, respectively). Gaze data were acquired while participants had to perform a multiple object tracking (MOT) task that required to track 4 out of 10 moving stimuli. In addition, in 66.7 % of all trials, one of the 4 targets suddenly stopped during the motion phase for a period of 0.5 s. Stimuli moved in front of a picture of a sports hall to allow for foveal processing. Due to the directional hypotheses, the level of significance for one-tailed tests on differences was set at α = .05 and posteriori effect sizes were computed as partial eta squares (ηρ2). Results: Due to problems with the gaze-data collection, 3 participants had to be excluded from further analyses. The expectation of a centroid strategy was confirmed because gaze was closer to the centroid than the target (all p < .01). In comparison to the plano baseline, participants more often recalled all 4 targets under defocus conditions, F(1,14) = 26.13, p < .01, ηρ2 = .65. The three defocus conditions differed significantly, F(2,28) = 2.56, p = .05, ηρ2 = .16, with a higher accuracy as a function of a defocus increase and significant contrasts between conditions +1.00 D and +2.00 D (p = .03) and +1.00 D and +3.00 D (p = .03). For stop trials, significant differences could neither be found between plano baseline and defocus conditions, F(1,14) = .19, p = .67, ηρ2 = .01, nor between the three defocus conditions, F(2,28) = 1.09, p = .18, ηρ2 = .07. Participants reacted faster in “4 correct+button” trials under defocus than under plano-baseline conditions, F(1,14) = 10.77, p < .01, ηρ2 = .44. The defocus conditions differed significantly, F(2,28) = 6.16, p < .01, ηρ2 = .31, with shorter response times as a function of a defocus increase and significant contrasts between +1.00 D and +2.00 D (p = .01) and +1.00 D and +3.00 D (p < .01). Discussion: The results show that gaze behaviour in MOT is not affected to a relevant degree by a visual overcorrection up to +3 diopters. Hence, it can be taken for granted that peripheral event detection was investigated in the present study. This overcorrection, however, does not harm the capability to peripherally track objects. Moreover, if an event has to be detected peripherally, neither response accuracy nor response time is negatively affected. Findings could claim considerable relevance for all sport situations in which peripheral vision is required which now needs applied studies on this topic. References: Bulson, R. C., Ciuffreda, K. J., & Hung, G. K. (2008). The effect of retinal defocus on golf putting. Ophthalmic and Physiological Optics, 28, 334-344.