865 resultados para Functionalized carbon nanotubes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate erbium- and thulium-doped fibre ring lasers mode-locked with a single-walled carbon nanotubes (SWCNT) operating at normal intracavity dispersion and high nonlinearity. The lasers generate transform-limited picosecond inversed-modified soliton pulses. © 2014 OSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on a new vector model of an erbium doped fiber laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. It results in a new family of vector solitons with fast evolving states of polarization experimentally observed in our previous papers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thulium-doped all-fibre laser hybrid mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes generating 500-fs high-order solitons with the pulse energy 10.87 nJ at 1.9 μm wavelength band is demonstrated. © 2014 OSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We overview our recent results on polarisation dynamics of vector solitons in erbium doped fibre laser mode locked with carbon nanotubes. Our experimental and theoretical study revealed new families of vector solitons for fundamental and bound-state soliton operations. The observed scenario of the evolution of the states of polarisation (SOPs) on the Poincare sphere includes fast polarisation switching between two and three SOPs along with slow SOP evolution on a double scroll chaotic attractor. The underlying physics presents an interplay between effects of birefringence of the laser cavity and light induced anisotropy caused by polarisation hole burning. © 2014 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on ring thulium-doped fiber laser hybrid mode-locked by single-walled carbon nanotubes and nonlinear polarization evolution generating 600-fs pulses at 1910-1980nm wavelength band with 72.5MHz repetition rate. Average output power reached 300mW in single-pulse operation regime, corresponding to 4.88kW peak power and 2.93nJ pulse energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller. © 2012 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thulium-doped all-fiber laser passively mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes operating at 1860-1980 nm wavelength band is demonstrated. Pumped with the single-mode laser diode at 1.55 μm laser generates near 500-fs soliton pulses at repetition rate ranging from 6.3 to 72.5 MHz in single-pulse operation regime. Having 3-m long cavity average output power reached 300 mW, giving the peak power of 4.88 kW and the pulse energy of 2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring cavity average output power of 117 mW is obtained, corresponding to the pulse energy up to 10.87 nJ and a pulse peak power of 21.7 kW, leading to the higher-order soliton generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An Erbium-doped fibre ring laser hybrid mode-locked with single-wall carbon nanotubes (SWNT) and nonlinear polarisation evolution (NPE) without an optical isolator has been investigated for various cavity conditions. Precise control of the state of polarisation (SOP) in the cavity ensures different losses for counter-propagating optical fields. As the result, the laser operates in quasi-unidirectional regime in both clockwise (CW) and counter-clockwise (CCW) directions with the emission strengths difference of the directions of 22 dB. Furthermore, by adjusting the net birefringence in the cavity, the laser can operate in a bidirectional generation. In this case, a laser pumped with 75 mW power at 980 nm generates almost identical 790 and 570 fs soliton pulses with an average power of 1.17 and 1.11 mW. The operation stability and pulse quality of the soliton pulses in both unidirectional regimes are highly competitive with those generated in conventional ring fibre lasers with isolator in the cavity. Demonstrated bidirectional laser operation can find vital applications in gyroscopes or precision rotation sensing technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For an erbium-doped fiber laser mode-locked by carbon nanotubes, we demonstrate experimentally and theoretically a new type of the vector rogue waves emerging as a result of the chaotic evolution of the trajectories between two orthogonal states of polarization on the Poincare sphere. In terms of fluctuation induced phenomena, by tuning polarization controller for the pump wave and in-cavity polarization controller, we are able to control the Kramers time, i.e. the residence time of the trajectory in vicinity of each orthogonal state of polarization, and so can cause the rare events satisfying rogue wave criteria and having the form of transitions from the state with the long residence time to the state with a short residence time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Miniaturized, self-sufficient bioelectronics powered by unconventional micropower may lead to a new generation of implantable, wireless, minimally invasive medical devices, such as pacemakers, defibrillators, drug-delivering pumps, sensor transmitters, and neurostimulators. Studies have shown that micro-enzymatic biofuel cells (EBFCs) are among the most intuitive candidates for in vivo micropower. In the fisrt part of this thesis, the prototype design of an EBFC chip, having 3D intedigitated microelectrode arrays was proposed to obtain an optimum design of 3D microelectrode arrays for carbon microelectromechanical systems (C-MEMS) based EBFCs. A detailed modeling solving partial differential equations (PDEs) by finite element techniques has been developed on the effect of 1) dimensions of microelectrodes, 2) spatial arrangement of 3D microelectrode arrays, 3) geometry of microelectrode on the EBFC performance based on COMSOL Multiphysics. In the second part of this thesis, in order to investigate the performance of an EBFC, behavior of an EBFC chip performance inside an artery has been studied. COMSOL Multiphysics software has also been applied to analyze mass transport for different orientations of an EBFC chip inside a blood artery. Two orientations: horizontal position (HP) and vertical position (VP) have been analyzed. The third part of this thesis has been focused on experimental work towards high performance EBFC. This work has integrated graphene/enzyme onto three-dimensional (3D) micropillar arrays in order to obtain efficient enzyme immobilization, enhanced enzyme loading and facilitate direct electron transfer. The developed 3D graphene/enzyme network based EBFC generated a maximum power density of 136.3 μWcm-2 at 0.59 V, which is almost 7 times of the maximum power density of the bare 3D carbon micropillar arrays based EBFC. To further improve the EBFC performance, reduced graphene oxide (rGO)/carbon nanotubes (CNTs) has been integrated onto 3D mciropillar arrays to further increase EBFC performance in the fourth part of this thesisThe developed rGO/CNTs based EBFC generated twice the maximum power density of rGO based EBFC. Through a comparison of experimental and theoretical results, the cell performance efficiency is noted to be 67%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low dimensional nanostructures, such as nanotubes and 2D sheets, have unique and promising material properties both from a fundamental science and an application standpoint. Theoretical modelling and calculations predict previously unobserved phenomena that experimental scientists often struggle to reproduce because of the difficulty in controlling and characterizing the small structures under real-world constraints. The goal of this dissertation is to controlling these structures so that nanostructures can be characterized in-situ in transmission electron microscopes (TEM) allowing for direct observation of the actual physical responses of the materials to different stimuli. Of most interest to this work are the thermal and electrical properties of carbon nanotubes, boron nitride nanotubes, and graphene. The first topic of the dissertation is using surfactants for aqueous processing to fabricate, store, and deposit the nanostructures. More specifically, thorough characterization of a new surfactant, ammonium laurate (AL), is provided and shows that this new surfactant outperforms the standard surfactant for these materials, sodium dodecyl sulfate (SDS), in almost all tested metrics. New experimental set-ups have been developed by combining specialized in-situ TEM holders with innovative device fabrication. For example, electrical characterization of graphene was performed by using an STM-TEM holder and depositing graphene from aqueous solutions onto lithographically patterned, electron transparent silicon nitride membranes. These experiments produce exciting information about the interaction between graphene and metal probes and the substrate that it rests on. Then, by adding indium to the backside of the membrane and employing the electron thermal microscopy (EThM) technique, the same type of graphene samples could be characterized for thermal transport with high spatial resolution. It is found that reduced graphene oxide sheets deposited onto a silicon nitride membrane and displaying high levels of wrinkling have higher than expected electrical and thermal conduction properties. We are clearly able to visualize the ability of graphene to spread heat away from an electronic hot spot and into the substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis demonstrates exciton engineering in semiconducting single-walled carbon nanotubes through tunable fluorescent quantum defects. By introducing different functional moieties on the sp2 lattice of carbon nanotubes, the nanotube photoluminescence is systematically tuned over 68 meV in the second near-infrared window. This new class of quantum emitters is enabled by a new chemistry that allows covalent attachment of alkyl/aryl functional groups from their iodide precursors in aqueous solution. Using aminoaryl quantum defects, we show that the pH and temperature of complex fluids can be optically measured through defect photoluminescence that encodes the local environment information. Furthermore, defect-bound trions, which are electron-hole-electron tri-carrier quasi-particles, are observed in alkylated single-walled carbon nanotubes at room temperature with surprisingly high photoluminescence brightness. Collectively, the emission from defect-bound excitons and trions in (6,5)-single walled carbon nanotubes is 18-fold brighter than that of the native exciton. These findings pave the way to chemical tailoring of the electronic and optical properties of carbon nanostructures with fluorescent quantum defects and may find applications in optoelectronics and bioimaging.