931 resultados para Franklin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-time acquisition of EMG during functional MRI (fMRI) provides a novel method of controlling motor experiments in the scanner using feedback of EMG. Because of the redundancy in the human muscle system, this is not possible from recordings of joint torque and kinematics alone, because these provide no information about individual muscle activation. This is particularly critical during brain imaging because brain activations are not only related to joint torques and kinematics but are also related to individual muscle activation. However, EMG collected during imaging is corrupted by large artifacts induced by the varying magnetic fields and radio frequency (RF) pulses in the scanner. Methods proposed in literature for artifact removal are complex, computationally expensive, and difficult to implement for real-time noise removal. We describe an acquisition system and algorithm that enables real-time acquisition for the first time. The algorithm removes particular frequencies from the EMG spectrum in which the noise is concentrated. Although this decreases the power content of the EMG, this method provides excellent estimates of EMG with good resolution. Comparisons show that the cleaned EMG obtained with the algorithm is, like actual EMG, very well correlated with joint torque and can thus be used for real-time visual feedback during functional studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies examining adaptation to unexpected changes in the mechanical environment highlight the use of position error in the adaptation process. However, force information is also available. In this chapter, we examine adaptation processes in three separate studies where the mechanical environment was changed intermittently. We compare the expected consequences of using position error and force information in the changes to motor commands following a change in the mechanical environment. In general, our results support the use of position error over force information and are consistent with current computational models of motor learning. However, in situations where the change in the mechanical environment eliminates position error the central nervous system does not necessarily respond as would be predicted by these models. We suggest that it is necessary to take into account the statistics of prior experience to account for our observations. Another deficiency in these models is the absence of a mechanism for modulating limb mechanical impedance during adaptation. We propose a relatively simple computational model based on reflex responses to perturbations which is capable of accounting for iterative changes in temporal patterns of muscle co-activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make and vary the direction of movements in unstable environments. It has been shown that when a single reaching movement is repeated in unstable dynamics, the central nervous system (CNS) learns an impedance internal model to compensate for the environment instability. However, there is still no explanation for how humans can learn to move in various directions in such environments. In this study, we investigated whether and how humans compensate for instability while learning two different reaching movements simultaneously. Results show that when performing movements in two different directions, separated by a 35° angle, the CNS was able to compensate for the unstable dynamics. After adaptation, the force was found to be similar to the free movement condition, but stiffness increased in the direction of instability, specifically for each direction of movement. Our findings suggest that the CNS either learned an internal model generalizing over different movements, or alternatively that it was able to switch between specific models acquired simultaneously. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that during arm movement, humans selectively change the endpoint stiffness of their arm to compensate for the instability in an unstable environment. When the direction of the instability is rotated with respect to the direction of movement, it was found that humans modify the antisymmetric component of their endpoint stiffness. The antisymmetric component of stiffness arises due to reflex responses suggesting that the subjects may have tuned their reflex responses as part of the feedforward adaptive control. The goal of this study was to examine whether the CNS modulates the gain of the reflex response for selective tuning of endpoint impedance. Subjects performed reaching movements in three unstable force fields produced by a robotic manipulandum, each field differing only in the rotational component. After subjects had learned to compensate for the field, allowing them to make unperturbed movements to the target, the endpoint stiffness of the arm was estimated in the middle of the movements. At the same time electromyographic activity (EMG) of six arm muscles was recorded. Analysis of the EMG revealed differences across force fields in the reflex gain of these muscles consistent with stiffness changes. This study suggests that the CNS modulates the reflex gain as part of the adaptive feedforward command in which the endpoint impedance is selectively tuned to overcome environmental instability. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans have exceptional abilities to learn new skills, manipulate tools and objects, and interact with our environment. In order to be successful at these tasks, our brain has developed learning mechanisms to deal with and compensate for the constantly changing dynamics of the world. If this mechanism or mechanisms can be understood from a computational point of view, then they can also be used to drive the adaptability and learning of robots. In this paper, we will present a new technique for examining changes in the feedforward motor command due to adaptation. This technique can then be utilized for examining motor adaptation in humans and determining a computational algorithm which explains motor learning. © 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans have exceptional abilities to learn new skills, manipulate tools and objects, and interact with our environment. In order to be successful at these tasks, our brain has become exceptionally well adapted to learning to deal not only with the complex dynamics of our own limbs but also with novel dynamics in the external world. While learning of these dynamics includes learning the complex time-varying forces at the end of limbs through the updating of internal models, it must also include learning the appropriate mechanical impedance in order to stabilize both the limb and any objects contacted in the environment. This article reviews the field of human learning by examining recent experimental evidence about adaptation to novel unstable dynamics and explores how this knowledge about the brain and neuro-muscular system can expand the learning capabilities of robotics and prosthetics. © 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In adapting to changing forces in the mechanical environment, humans change the force being applied by the limb by reciprocal changes in the activation of antagonistic muscles. However, they also cocontract these muscles when interaction with the environment is mechanically unstable to increase the mechanical impedance of the limb. We have postulated that appropriate patterns of muscle activation could be learned using a simple scheme in which the naturally occurring stretch reflex is used as a template to adjust feedforward commands to muscles. Feedforward commands are modified iteratively by shifting a scaled version of the reflex response forward in time and adding it to the previous feedforward command. We show that such an algorithm can account for the principal features of changes in muscle activation observed when human subjects adapt to instabilities in the mechanical environment. © 2006.