1 resultado para Franklin
em CaltechTHESIS
Filtro por publicador
- Rhode Island School of Design (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (7)
- Applied Math and Science Education Repository - Washington - USA (9)
- Aquatic Commons (33)
- Archive of European Integration (2)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (13)
- Bibloteca do Senado Federal do Brasil (23)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (3)
- Brock University, Canada (15)
- CaltechTHESIS (1)
- Cámara de Comercio de Bogotá, Colombia (74)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (22)
- Center for Jewish History Digital Collections (9)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons - Montana Tech (1)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (8)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (7)
- Harvard University (6)
- Indian Institute of Science - Bangalore - Índia (21)
- Infoteca EMBRAPA (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (87)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (78)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (21)
- Queensland University of Technology - ePrints Archive (43)
- Repositório digital da Fundação Getúlio Vargas - FGV (11)
- Repositorio Institucional de la Universidad Nacional Agraria (9)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (67)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- School of Medicine, Washington University, United States (5)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad del Rosario, Colombia (33)
- Universidad Politécnica Salesiana Ecuador (1)
- Universidade Federal do Pará (16)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (2)
- University of Michigan (160)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- USA Library of Congress (1)
- WestminsterResearch - UK (1)
Resumo:
A means of assessing the effectiveness of methods used in the numerical solution of various linear ill-posed problems is outlined. Two methods: Tikhonov' s method of regularization and the quasireversibility method of Lattès and Lions are appraised from this point of view.
In the former method, Tikhonov provides a useful means for incorporating a constraint into numerical algorithms. The analysis suggests that the approach can be generalized to embody constraints other than those employed by Tikhonov. This is effected and the general "T-method" is the result.
A T-method is used on an extended version of the backwards heat equation with spatially variable coefficients. Numerical computations based upon it are performed.
The statistical method developed by Franklin is shown to have an interpretation as a T-method. This interpretation, although somewhat loose, does explain some empirical convergence properties which are difficult to pin down via a purely statistical argument.