510 resultados para Foam.
Resumo:
Il grafene, allotropo del carbonio costituito da un reticolo bidimensionale, è uno dei nanomateriali più promettenti allo stato attuale della ricerca nei campi della Fisica e della Chimica, ma anche dell'Ingegneria e della Biologia. Isolato e caratterizzato per la prima volta nel 2004 dai ricercatori russi Andre Geim e Konstantin Novoselov presso l'Università di Manchester, ha aperto la via sia a studi teorici per comprendere con gli strumenti della Meccanica Quantistica gli effetti di confinamento in due dimensioni (2D), sia ad un vastissimo panorama di ricerca applicativa che ha l'obiettivo di sfruttare al meglio le straordinarie proprietà meccaniche, elettriche, termiche ed ottiche mostrate da questo materiale. Nella preparazione di questa tesi ho personalmente seguito presso l'Istituto per la Microelettronica e i Microsistemi (IMM) del CNR di Bologna la sintesi mediante Deposizione Chimica da Fase Vapore (CVD) di grafene "tridimensionale" (3D) o "poroso" (denominato anche "schiuma di grafene", in inglese "graphene foam"), ossia depositato su una schiuma metallica dalla struttura non planare. In particolare l'obiettivo del lavoro è stato quello di misurare le proprietà di conduttività elettrica dei campioni sintetizzati e di confrontarle con i risultati dei modelli che le descrivono teoricamente per il grafene planare. Dopo un primo capitolo in cui descriverò la struttura cristallina, i livelli energetici e la conduzione dei portatori di carica nel reticolo ideale di grafene 2D (utilizzando la teoria delle bande e l'approssimazione "tight-binding"), illustrerò le differenti tecniche di sintesi, in particolare la CVD per la produzione di grafene poroso che ho seguito in laboratorio (cap.2). Infine, nel capitolo 3, presenterò la teoria di van der Pauw su cui è basato il procedimento per eseguire misure elettriche su film sottili, riporterò i risultati di conduttività delle schiume e farò alcuni confronti con le previsioni della teoria.
Resumo:
Oil spills in marine environments often damage marine and coastal life if not remediated rapidly and efficiently. In spite of the strict enforcement of environmental legislations (i.e., Oil Pollution Act 1990) following the Exxon Valdez oil spill (June 1989; the second biggest oil spill in U.S. history), the Macondo well blowout disaster (April 2010) released 18 times more oil. Strikingly, the response methods used to contain and capture spilled oil after both accidents were nearly identical, note that more than two decades separate Exxon Valdez (1989) and Macondo well (2010) accidents.
The goal of this dissertation was to investigate new advanced materials (mechanically strong aerogel composite blankets-Cabot® Thermal Wrap™ (TW) and Aspen Aerogels® Spaceloft® (SL)), and their applications for oil capture and recovery to overcome the current material limitations in oil spill response methods. First, uptake of different solvents and oils were studied to answer the following question: do these blanket aerogel composites have competitive oil uptake compared to state-of-the-art oil sorbents (i.e., polyurethane foam-PUF)? In addition to their competitive mechanical strength (766, 380, 92 kPa for Spaceloft, Thermal Wrap, and PUF, respectively), our results showed that aerogel composites have three critical advantages over PUF: rapid (3-5 min.) and high (more than two times of PUF’s uptake) oil uptake, reusability (over 10 cycles), and oil recoverability (up to 60%) via mechanical extraction. Chemical-specific sorption experiments showed that the dominant uptake mechanism of aerogels is adsorption to the internal surface, with some contribution of absorption into the pore space.
Second, we investigated the potential environmental impacts (energy and chemical burdens) associated with manufacturing, use, and disposal of SL aerogel and PUF to remove the oil (i.e., 1 m3 oil) from a location (i.e., Macondo well). Different use (single and multiple use) and end of life (landfill, incinerator, and waste-to-energy) scenarios were assessed, and our results demonstrated that multiple use, and waste-to-energy choices minimize the energy and material use of SL aerogel. Nevertheless, using SL once and disposing via landfill still offers environmental and cost savings benefits relative to PUF, and so these benefits are preserved irrespective of the oil-spill-response operator choices.
To inform future aerogel manufacture, we investigated the different laboratory-scale aerogel fabrication technologies (rapid supercritical extraction (RSCE), CO2 supercritical extraction (CSCE), alcohol supercritical extraction (ASCE)). Our results from anticipatory LCA for laboratory-scaled aerogel fabrication demonstrated that RSCE method offers lower cumulative energy and ecotoxicity impacts compared to conventional aerogel fabrication methods (CSCE and ASCE).
The final objective of this study was to investigate different surface coating techniques to enhance oil recovery by modifying the existing aerogel surface chemistries to develop chemically responsive materials (switchable hydrophobicity in response to a CO2 stimulus). Our results showed that studied surface coating methods (drop casting, dip coating, and physical vapor deposition) were partially successful to modify surface with CO2 switchable chemical (tributylpentanamidine), likely because of the heterogeneous fiber structure of the aerogel blankets. A possible solution to these non-uniform coatings would be to include switchable chemical as a precursor during the gel preparation to chemically attach the switchable chemical to the pores of the aerogel.
Taken as a whole, the implications of this work are that mechanical deployment and recovery of aerogel composite blankets is a viable oil spill response strategy that can be deployed today. This will ultimately enable better oil uptake without the uptake of water, potential reuse of the collected oil, reduced material and energy burdens compared to competitive sorbents (e.g., PUF), and reduced occupational exposure to oiled sorbents. In addition, sorbent blankets and booms could be deployed in coastal and open-ocean settings, respectively, which was previously impossible.
Resumo:
De nouveaux modèles cellulaires in vitro par transfert de milieu et par coculture ont été mis au point afin d’évaluer la capacité des HDL à éliminer l’excès de cholestérol des tissus périphériques et de le transporter vers le foie afin d’être excrété par le foie, un processus nommé le transport inverse du cholestérol (TIC). Le système cellulaire par transfert in vitro où des macrophages J774 sont gorgés de LDL acétylées et marqués au 3H-cholestérol a été préalablement établi afin de mesurer par scintillation l’efflux de cholestérol marqué vers le milieu de culture contenant des accepteurs de cholestérol. Ce milieu conditionné est transféré sur des cellules HepG2 afin d’étudier l’influx du cholestérol marqué. Ce dernier nous permet d’observer un transport de cholestérol de 25 % hors des J774 et un transport de 39 000 cpm dans les HepG2 en utilisant un milieu contenant 2 % de sérums humains mis en commun. Une stimulation des cellules J774 par l’AMPc augmente l’efflux et l’influx d’environ 45 %. Des tests de preuve de concept ont été effectués sur le système cellulaire par co-culture qui utilise des chambres de Boyden où les J774 sont localisées au fond d’un puits et les HepG2 dans un insert, et où le milieu est partagé entre les deux types cellulaires. On a déterminé qu’une confluence densité de 60 000 cellules/cm2 sur un insert constitué d’une membrane de polyester avec des pores de 3,0 μm, sans autre revêtement, permet d’observer un influx spécifique au sérum d’environ 6 000 cpm associés aux cellules HepG2, où 50 % des comptes radioactifs sont dans les cellules et l’autre moitié présente à la surface cellulaire.
Resumo:
Analytical data on the basic salt composition in evaporation products of sea (ocean) water and of rain water falling on the central area of the Indian Ocean are examined. Both hot and low-temperature (vacuum) distillation were used. When ocean water evaporates under calm conditions, sea salts in molecular-dispersed state, metamorphosed in the upper boundary layer, enter the atmosphere in addition to water vapor ("salt respiration of the ocean"). Concentration of these salts is about 0.5 mg per liter of water evaporated. Salts also enter the atmosphere from a foam-covered ocean surface as aerosols.
Resumo:
We consider the simplest relevant problem in the foaming of molten plastics, the growth of a single bubble in a sea of highly viscous Newtonian fluid, and without interference from other bubbles. This simplest problem has defied accurate solution from first principles. Despite plenty of research on foaming, classical approaches from first principles have neglected the temperature rise in the surrounding fluid, and we find that this oversimplification greatly accelerates bubble growth prediction. We use a transport phenomena approach to analyze the growth of a solitary bubble, expanding under its own pressure. We consider a bubble of ideal gas growing without the accelerating contribution from mass transfer into the bubble. We explore the roles of viscous forces, fluid inertia, and viscous dissipation. We find that bubble growth depends upon the nucleus radius and nucleus pressure. We begin with a detailed examination of the classical approaches (thermodynamics without viscous heating). Our failure to fit experimental data with these classical approaches, sets up the second part of our paper, a novel exploration of the essential decelerating role of viscous heating. We explore both isothermal and adiabatic bubble expansion, and also the decelerating role of surface tension. The adiabatic analysis accounts for the slight deceleration due to the cooling of the expanding gas, which depends on gas polyatomicity. We also explore the pressure profile, and the components of the extra stress tensor, in the fluid surrounding the growing bubble. These stresses can eventually be frozen into foamed plastics. We find that our new theory compares well with measured bubble behavior.
Resumo:
Background and aims Atherosclerosis is known to be an inflammatory disease and there is increasing evidence that chylomicron remnants (CMR), the lipoproteins which carry dietary fats in the blood, cause macrophage foam cell formation and inflammation. In early atherosclerosis the frequency of activated monocytes in the peripheral circulation is increased, and clearance of CMR from blood may be delayed, however, whether CMR contribute directly to monocyte activation and subsequent egress into the arterial wall has not been established. Here, the contribution of CMR to activation of monocyte pro-inflammatory pathways was assessed using an in vitro model. Methods and results Primary human monocytes and CMR-like particles (CRLP) were used to measure several endpoints of monocyte activation. Treatment with CRLP caused rapid and prolonged generation of reactive oxygen species by monocytes. The pro-inflammatory chemokines MCP-1 and IL-8 were secreted in nanogram quantities by the cells in the absence of CRLP. IL-8 secretion was transiently increased after CRLP treatment, and CRLP maintained secretion in the presence of pharmacological inhibitors of IL-8 production. In contrast, exposure to CRLP significantly reduced MCP-1 secretion. Chemotaxis towards MCP-1 was increased in monocytes pre-exposed to CRLP and was reversed by addition of exogenous MCP-1. Conclusion Our findings indicate that CRLP activate human monocytes and augment their migration in vitro by reducing cellular MCP-1 expression. Our data support the current hypothesis that CMR contribute to the inflammatory milieu of the arterial wall in early atherosclerosis, and suggest that this may reflect direct interaction with circulating blood monocytes.
Resumo:
Current evidence indicates that chylomicron remnants (CMR) induce macrophage foam cell formation, an early event in atherosclerosis. Inflammation also plays a part in atherogenesis and the transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated. In this study, the influence of CMR on the activity of NF-kappaB in macrophages and its modulation by the fatty acid composition of the particles were investigated using macrophages derived from the human monocyte cell line THP-1 and CMR-like particles (CRLPs). Incubation of THP-1 macrophages with CRLPs caused decreased NF-kappaB activation and downregulated the expression of phospho-p65-NF-kappaB and phospho-IkappaBalpha (pIkappaBalpha). Secretion of the inflammatory cytokines tumour necrosis factor alpha, interleukin-6 and monocyte chemoattractant protein-1, which are under NF-kappaB transcriptional control, was inhibited and mRNA expression for cyclooxygenase-2, an NF-kappaB target gene, was reduced. CRLPs enriched in polyunsaturated fatty acids compared with saturated or monounsaturated fatty acids had a markedly greater inhibitory effect on NF-kappaB binding to DNA and the expression of phospho-p65-NF-kappaB and pIkappaB. Lipid loading of macrophages with CRLPs enriched in polyunsaturated fatty acids compared with monounsaturated fatty acids or saturated fatty acids also increased the subsequent rate of cholesterol efflux, an effect which may be linked to the inhibition of NF-kappaB activity. These findings demonstrate that CMR suppress NF-kappaB activity in macrophages, and that this effect is modulated by their fatty acid composition. This downregulation of inflammatory processes in macrophages may represent a protective effect of CMR which is enhanced by dietary polyunsaturated fatty acids.
Resumo:
The influence of the fatty acid composition of chylomicron remnant-like particles (CRLPs) on their uptake and induction of lipid accumulation in macrophages was studied. CRLPs containing triacylglycerol enriched in saturated, monounsaturated, n−6 or n−3 polyunsaturated fatty acids derived from palm, olive, corn or fish oil, respectively, and macrophages derived from the human monocyte cell line THP-1 were used. Lipid accumulation (triacylglycerol and cholesterol) in the cells was measured after incubation with CRLPs for 5, 24 and 48 h, and uptake over 24 h was determined using CRLPs radiolabelled with [3H]triolein. Total lipid accumulation in the macrophages was significantly greater with palm CRLPs than with the other three types of particle. This was mainly due to increased triacylglycerol concentrations, whereas changes in cholesterol concentrations did not reach significance. There were no significant differences in lipid accumulation after incubation with olive, corn or fish CRLPs. Palm and olive CRLPs were taken up by the cells at a similar rate, which was considerably faster than that observed with corn and fish CRLPs. These findings demonstrate that CRLPs enriched in saturated or monounsaturated fatty acids are taken up more rapidly by macrophages than those enriched in n−6 or n−3 polunsaturated fatty acids, and that the faster uptake rate results in greater lipid accumulation in the case of saturated fatty acid-rich particles, but not monounsaturated fatty acid-rich particles. Thus, dietary saturated fatty acids carried in chylomicron remnants may enhance their propensity to induce macrophage foam cell formation.
Resumo:
El concurso de transformación mágica, esquema narrativo difundido en la tradición popular, se presenta en dos variantes principales: los hechiceros que compiten pueden metamorfosearse en varios seres o crear esos seres por medios mágicos. En cualquier caso el concursante ganador da a luz criaturas más fuertes que superan las de su oponente. La segunda variante fue preferida en el antiguo Cercano Oriente (Sumeria, Egipto, Israel). La primera se puede encontrar en algunos mitos griegos sobre cambiadores de forma (por ejemplo, Zeus y Némesis). El mismo esquema narrativo puede haber influido en un episodio de la Novela de Alejandro (1.36-38), en el que Darío envía regalos simbólicos a Alejandro y los dos monarcas enemigos ofrecen contrastantes explicaciones de ellos. Esta historia griega racionaliza el concurso de cuento de hadas, transfiriendo las fantásticas hazañas de creaciones milagrosas a un plano secundario pero realista de metáfora lingüística.
Resumo:
The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.
Resumo:
Ti nanowire arrays vertically standing on Ti foam prepared by a facile corrosion method were used as self-supported Li-O2 battery cathodes. The batteries exhibited enhanced durability at high rate current densities (e.g. cycling 640 times at 5 A g-1).
Resumo:
Composites are fast becoming a cost effective option when considering the design of engineering structures in a broad range of applications. If the strength to weight benefits of these material systems can be exploited and challenges in developing lower cost manufacturing methods overcome, then the advanced composite systems will play a bigger role in the diverse range of sectors outside the aerospace industry where they have been used for decades.
This paper presents physical testing results that showcase the advantages of GRP (Glass Reinforced Plastics), such as the ability to endure loading with minimal deformation. The testing involved is a cross comparison of GRP grating vs. GRP encapsulated foam core. Resulting data gained within this paper will then be coupled with design optimization (utilising model simulation) to bring forward layup alterations to meet the specified load classifications involved.
Resumo:
In 2009 Avella created a series of innovative fabrics for the Yves St Laurent (YSL) collection, deploying techniques from vehicle engineering to generate new materials for a range of garments. Studying the bonding of layers of material in ceramic plate thermobonding technology, Avella conducted a series of experiments with textiles such as flannel, silk and synthetics, and material such as leather, layered with polyamide foam and textile substrate to create new, textured and insulating fabrics with beautiful surfaces and interesting forms. The lightweight properties of the foam enabled the maximum insulation/weight ratio, and the panel moulding technology brought new forms of draping prêt-a-porter fashion design. Exclusive to YSL, this technique was patented and then shown at the Premiere Vision textiles trade fair in 2010. Much documented in specialist journals this innovation also breached the trade-culture barrier and was reported and documented in mainstream newspapers (New York Herald Tribune). Avella’s background in textile workshop studio experimentation at the RCA brought to YSL textiles research for manufacture, the innovative collaboration between fashion couture and engineering laboratory experiments from vehicle design.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Gluten sensitive consumers and people suffering from coeliac disease account for up to 6% of the general population (Catassi et al., 2013). These consumers must avoid foods which contain gluten and related proteins found in wheat, rye or barley. Beer is produced from barley malt and therefore contains hordeins, (gluten like proteins). Beers labelled as gluten-free must contain below 10 mg/kg hordeins (10 mg/kg hordeins = 20 mg/kg gluten under current regulations) to be considered safe for gluten sensitive consumers. Currently there are a limited number of methods available for reducing beer hordeins, the studies outlined in this thesis provide a range of tools for the beverage industry to reduce the hordein content of beer It is well known, that during malting and brewing hordeins are reduced, but they still remain in beer at levels above 10 mg/kg. During malting, hordeins are broken down to form new proteins in the growing plant. Model malting and brewing systems were developed and used to test, how the modification of the malting process could be used to reduce beer hordeins. It was shown, that by using a controlled malting and brewing regime, a range of barley cultivars produced beer with significant differences in levels of hordeins. Beer hordeins ranged from 10 mg/kg to 60 mg/kg. Another study revealed that when malting was prolonged, to maximise breakdown of proteins, beer hordeins can be reduced by up to 44%. The natural breakdown of hordein during malting enhanced in a further study, when a protease was added to support the hordein degradation during steeping and germination. The enzyme addition resulted in a 46% reduction in beer hordeins 2 when compared to the control. All of the malt treatments had little or no impact on malt quality. The hordein levels can also be reduced during the beer stabilisation process. Levels of beer hordein were tested after stabilisation using two different concentrations of silica gel and tannic acid. Silica gel was very effective in reducing beer hordeins, 90% of beer hordeins were removed compared to the control beer. Beer hordeins could be reduced to below 10 mg/kg and the beer qualities such as foam, colour and flavour were not affected. Tannic acid also reduced beer hordein by up to 90%, but it reduced foam stability and affected beer flavours. A further study described treatment of beer with microbial transglutaminase (mTG), to create bonds between hordein proteins, which increased particle size and allowed removal during filtration. The addition of the mTG led to a reduction of the beer hordein by up to 96% in beer, and the impact on the resulting beer quality was minimal. These studies provide the industry with a toolbox of methods leading to the reduction of hordein in the final beer without negatively affecting beer quality.