986 resultados para Fermi accelerator
Resumo:
In this article, a Field Programmable Gate Array (FPGA)-based hardware accelerator for 3D electromagnetic extraction, using Method of Moments (MoM) is presented. As the number of nets or ports in a system increases, leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products presents a time bottleneck in a linear-complexity fast solver framework. In this work, an FPGA-based hardware implementation is proposed toward a two-level parallelization scheme: (i) matrix level parallelization for single RHS and (ii) pipelining for multiple-RHS. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple nets in a Ball Grid Array (BGA) package. The acceleration is shown to be linearly scalable with FPGA resources and speed-ups over 10x against equivalent software implementation on a 2.4GHz Intel Core i5 processor is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board with the implemented design operating at 200MHz clock frequency. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:776-783, 2016
Resumo:
The complete proof of the virial theorem in refined Thomas-Fermi-Dirac theory for all electrons of an atom in a solid is given.
Resumo:
Residual stress and its gradient through the thickness are among the most important properties of as-deposited films. Recently, a new mechanism based on a revised Thomas-Fermi-Dirac (TFD) model was proposed for the origin of intrinsic stress in solid film
Resumo:
A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.
Resumo:
本文概述了斜爆轰的基本演化特征,并对楔角、斜爆轰角以及放热量三者之间的关系进行了详细的描述,在此基础上深入讨论了斜爆轰波数值简化模型,给出了斜爆轰的两种应用:冲压加速器(Ram Accelerator)和斜爆轰推进系统ODWE(Oblique Detonation Wave Engine for Scramjet),最后对斜爆轰的下一步研究给出了自己的一点点思考。
Resumo:
Bi dimentsiotako materialetan presente diren propietate elektroniko bereziek betidanik piztu izan dute komunitate zientifikoaren interesa. Idealki atomo bakarreko lodierako materialak diren hauek hasiera batean joku teoriko huts zirela uste bazen ere, A.K. Geim eta K.S. Novoselov-ek kontrakoa frogatu zuten lehenengo aldiz grafenoa sintetizatuz[1]. Grafitoa osatzen duen geruzetako bakoitza den grafenoak guztiz anomaloak diren pro- pietate elektronikoak dauzka, Dirac-en motako sei puntuz besterik ez osatutako Fermi gainazala duelarik. Honen ondorioz, eroapen elektroiak masa gabekoak balira bezala higitzen dira mobilitate elektronikoa areagotuz. Propietate berezi hauetaz baliatuko liratekeen aplikazio teknologiko posibleek[2] material honekiko interesa egun arlo zienti- fikotik at ere hedatzea eragin du. Grafenoaren sintesiaren errekonozimendu gisa Geim eta Novoselov-ek 2010ean fisikaren Nobel saria lortu zuten. Hala ere, grafenoa ez da sintetiza daitekeen material bidimentsional bakarra. Grafenoa lortzeko teknika bera erabiliz (banantze mikromekanikoa), Geim eta Novoselov-ek zu- zendutako taldeak M oS2 eta N bSe2 sintetizatzea lortu zuen[3]. Konkretuki, M oS2 mo- nogeruza erdieroalea izanik transistoreak minimizatzeko prozesuan silizioaren ordezkari gisa jarduteko hautagaia da. Hala ere, hau egin ahal izateko bere propietate elektro- nikoak sakonkiago aztertzea komeni da. Gradu amaierako lan honetan material honen egitura elektronikoaren eta magnetikoaren karakterizazio teorikoan aurrerapauso txiki bat egitea izan dugu helburu. Horrez gain, W S2 materiala ere era berean landu da, tungsteno atomoa pisutsuagoa izatean, spin-orbita elkarrekintzaren eragina nabariagoa izatea espero baita. Modu honetan, lan hau hiru atal nagusitan banatzen da. Lehenengoa teoriari dago- kio, DF T (Dentsitatearen Funtzionalaren Teoria) inplementatzeko oinarri teorikoa lan- du delarik. Magnetizazioa aztertzeko ezinbestekoa den espina inplementatzeko modua ere aztertu da, eta baita egin beharreko hurbilketen eta pseudopotentzialen metodoaren azalpen bat eman ere. Bigarren atalean QuantumEspresso kodea erabiliz burututako ab-initio kalkuluen deskripzio eta emaitzak aurkeztu dira, azkenei dagokien interpreta- zioa eginez. Bertan M oS2 -n bolumenetiketik monogeruzara pasatzeak egitura elektroni- koan duen eragina aztertu da, ondoren M oS2 eta W S2 monogeruzen banda egitura eta magnetizazioan analisi sakonagoa eginez. Azkenengo atalean ateratako ondorioak idatzi dira, etorkizunerako lanetarako ateak zabalduz.
Resumo:
9 p.
Resumo:
179 p.
Resumo:
This thesis details the investigations of the unconventional low-energy quasiparticle excitations in electron-type cuprate superconductors and electron-type ferrous superconductors as well as the electronic properties of Dirac fermions in graphene and three-dimensional strong topological insulators through experimental studies using spatially resolved scanning tunneling spectroscopy (STS) experiments.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type cuprate La0.1Sr0.9CuO2 (La-112) TC = 43 K, are investigated experimentally. For temperature (T) less than the superconducting transition temperature (TC), and in zero field, the quasiparticle spectra of La-112 exhibits gapped behavior with two coherence peaks and no satellite features. For magnetic field measurements at T < TC, first ever observation of vortices in La-112 are reported. Moreover, pseudogap-like spectra are revealed inside the core of vortices, where superconductivity is suppressed. The intra-vortex pseudogap-like spectra are characterized by an energy gap of VPG = 8.5 ± 0.6 meV, while the inter-vortex quasiparticle spectra shows larger peak-to-peak gap values characterized by Δpk-pk(H) >VPG, and Δpk-pk (0)=12.2 ± 0.8 meV > Δpk-pk (H > 0). The quasiparticle spectra are found to be gapped at all locations up to the highest magnetic field examined (H = 6T) and reveal an apparent low-energy cutoff at the VPG energy scale.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type "122" iron-based Ba(Fe1-xCox)2As2 are investigated for multiple doping levels (x = 0.06, 0.08, 0.12 with TC= 14 K, 24 K, and 20 K). For all doping levels and the T < TC, two-gap superconductivity is observed. Both superconducting gaps decrease monotonically in size with increasing temperature and disappear for temperatures above the superconducting transition temperature, TC. Magnetic resonant modes that follow the temperature dependence of the superconducting gaps have been identified in the tunneling quasiparticle spectra. Together with quasiparticle interference (QPI) analysis and magnetic field studies, this provides strong evidence for two-gap sign-changing s-wave superconductivity.
Additionally spatial scanning tunneling spectroscopic studies are performed on mechanically exfoliated graphene and chemical vapor deposition grown graphene. In all cases lattice strain exerts a strong influence on the electronic properties of the sample. In particular topological defects give rise to pseudomagnetic fields (B ~ 50 Tesla) and charging effects resulting in quantized conductance peaks associated with the integer and fractional Quantum Hall States.
Finally, spectroscopic studies on the 3D-STI, Bi2Se3 found evidence of impurity resonance in the surface state. The impurities are in the unitary limit and the spectral resonances are localized spatially to within ~ 0.2 nm of the impurity. The spectral weight of the impurity resonance diverges as the Fermi energy approaches the Dirac point and the rapid recovery of the surface state suggests robust topological protection against perturbations that preserve time reversal symmetry.
Resumo:
Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission at low energies and inverse Compton at high energies is well established, important aspects of blazars are not well understood. In particular, the location of the gamma-ray emission region is not clearly established, with some theories favoring a location close to the central engine, while others place it at parsec scales in the radio jet.
We developed a program to locate the gamma-ray emission site in blazars, through the study of correlated variations between their gamma-ray and radio-wave emission. Correlated variations are expected when there is a relation between emission processes at both bands, while delays tell us about the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi) north of -20 degrees declination. This program complements the continuous monitoring of gamma-rays by Fermi.
Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations that account for the uneven sampling and noise properties of the light curves, which are modeled as red-noise processes with a simple power-law power spectral density. We found that out of 86 sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34 and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus disfavoring the model of Blandford and Levinson (1995), while other cases are inconclusive. These findings show that continuous monitoring over long time periods is required to understand the cross-correlation between gamma-ray and radio-wave variability in most blazars.
Resumo:
Inelastic neutron scattering (INS) and nuclear-resonant inelastic x-ray scattering (NRIXS) were used to measure phonon spectra of FeV as a B2- ordered compound and as a bcc solid solution. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2-ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy, which stabilizes the ordered phase to higher temperatures. Ab initio calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.
The phonon spectra of Au-rich alloys of fcc Au-Fe were also measured. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon density of states (DOS) with Fe concentration that increases the miscibility gap temperature. The magnitude of the effect is non- linear and it is reduced at higher Fe concentrations. Force constants were calculated for several compositions and show a local stiffening of Au–Au bonds close to Fe atoms, but Au–Au bonds that are farther away do not show this effect. Phonon DOS curves calculated from the force constants reproduced the experimental trends. The Au–Fe bond is soft and favors ordering, but a charge transfer from the Fe to the Au atoms stiffens the Au–Au bonds enough to favor unmixing. The stiffening is attributed to two main effects comparable in magnitude: an increase in electron density in the free-electron-like states, and stronger sd-hybridization.
INS and NRIXS measurements were performed at elevated temperatures on B2-ordered FeTi and NRIXS measurements were performed at high pressures. The high-pressure behavior is quasi- harmonic. The softening of the phonon DOS curves with temperature is strongly nonharmonic. Calculations of the force constants and Born-von Karman fits to the experimental data show that the bonds between second nearest neighbors (2nn) are much stiffer than those between 1nn, but fits to the high temperature data show that the former softens at a faster rate with temperature. The Fe–Fe bond softens more than the Ti–Ti bond. The unusual stiffness of the 2nn bond is explained by the calculated charge distribution, which is highly aspherical and localized preferentially in the t2g orbitals. Ab initio molecular dynamics (AIMD) simulations show a charge transfer from the t2g orbitals to the eg orbitals at elevated temperatures. The asphericity decreases linearly with temperature and is more severe at the Fe sites.
Resumo:
Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.
Resumo:
Chapter 1
Cyclobutanediyl has been studied in both its singlet and triplet states by ab initio electronic structure theory. The triplet, which is the ground state of the molecule, exists in both C_(2h) and C_(2v) forms, which interconvert via a C_s transition state. For the singlet, only a C_(2h) form is found. It passes, via a C_s transition state, onto the C_(2v) surface on which bicyclobutane is the only minimum. The ring-flipping (inversion) process in bicyclobutane includes the singlet biradical as an intermediate, and involves a novel, nonleast motion pathway. Semiclassical periodic orbit theory indicates that the various minima on both the singlet and triplet surfaces can interconvert via quantum mechanical tunneling.
Chapter 2
The dimethylenepolycyclobutadienes (n) are the non-Kekulé analogues of the classical acenes. Application of a variety of theoretical methods reveals several novel features of such structures. Most interesting is the emergence of a parity rule. When n is even, n is predicted to be a singlet, with n disjoint NBMOs. When n is odd, theory predicts a triplet ground state with (n+1) NBMOs that are not fully disjoint.
Chapter 3
Bi(cyclobutadienyl) (2), the cyclobutadiene analogue of biphenyl, and its homologues tri- (3) and tetra(cyclobutadienyl) (4) have been studied using electronic structure theory. Ab initio calculations on 2 reveal that the central bond is a true double bond, and that the structure is best thought of as two allyl radicals plus an ethylene. The singlet and triplet states are essentially degenerate. Trimer 3 is two allyls plus a dimethylenecyclobutanediyl, while 4 is two coplanar bi(cyclobutadienyl) units connected by a single bond. For both 3 and 4, the quintet, triplet, and singlet states are essentially degenerate, indicating that they are tetraradicals. The infinite polymer, polycyclobutadiene, has been studied by HMO, EHCO, and VEH methods. Several geometries based on the structures of 3 and 4 have been studied, and the band structures are quite intriguing. A novel crossing between the valence and conduction bands produces a small band gap and a high density of states at the Fermi level.
Chapter 4
At the level of Hückel theory, polyfulvene has a HOCO-LUCO degeneracy much like that seen in polyacetylene. Higher levels of theory remove the degeneracy, but the band gap (E_g) is predicted to be significantly smaller than analogous structures such as polythiophene and polypyrrole at the fulvenoid geometry. An alternative geometry, which we have termed quinoid, is also conceivable for polyfulvene, and it is predicted to have a much larger E_g. The effects of benzannelation to produce analogues of polyisothianaphthene have been evaluated. We propose a new model for such structures based on conventional orbital mixing arguments. Several of the proposed structures have quite interesting properties, which suggest that they are excellent candidates for conducting polymers.
Chapter 5
Theoretical studies of polydimethylenecyclobutene and polydiisopropylidene- cyclobutene reveal that, because of steric crowding, they cannot achieve a planar, fully conjugated structure in either their undoped or doped states. Rather, the structure consists of essentially orthogonal hexatriene units. Such a structure is incompatible with conventional conduction mechanisms involving polarons and bipolarons.
Resumo:
The core-level energy shifts observed using X-ray photoelectron spectroscopy (XPS) have been used to determine the band bending at Si(111) surfaces terminated with Si-Br, Si-H, and Si-CH3 groups, respectively. The surface termination influenced the band bending, with the Si 2p3/2 binding energy affected more by the surface chemistry than by the dopant type. The highest binding energies were measured on Si(111)-Br (whose Fermi level was positioned near the conduction band at the surface), followed by Si(111)-H, followed by Si(111)-CH3 (whose Fermi level was positioned near mid-gap at the surface). Si(111)-CH3 surfaces exposed to Br2(g) yielded the lowest binding energies, with the Fermi level positioned between mid-gap and the valence band. The Fermi level position of Br2(g)-exposed Si(111)-CH3 was consistent with the presence of negatively charged bromine-containing ions on such surfaces. The binding energies of all of the species detected on the surface (C, O, Br) shifted with the band bending, illustrating the importance of isolating the effects of band bending when measuring chemical shifts on semiconductor surfaces. The influence of band bending was confirmed by surface photovoltage (SPV) measurements, which showed that the core levels shifted toward their flat-band values upon illumination. Where applicable, the contribution from the X-ray source to the SPV was isolated and quantified. Work functions were measured by ultraviolet photoelectron spectroscopy (UPS), allowing for calculation of the sign and magnitude of the surface dipole in such systems. The values of the surface dipoles were in good agreement with previous measurements as well as with electronegativity considerations. The binding energies of the adventitious carbon signals were affected by band bending as well as by the surface dipole. A model of band bending in which charged surface states are located exterior to the surface dipole is consistent with the XPS and UPS behavior of the chemically functionalized Si(111) surfaces investigated herein.