877 resultados para Fault coverage
Resumo:
This paper presents an analysis of the fault tolerance achieved by an autonomous, fully embedded evolvable hardware system, which uses a combination of partial dynamic reconfiguration and an evolutionary algorithm (EA). It demonstrates that the system may self-recover from both transient and cumulative permanent faults. This self-adaptive system, based on a 2D array of 16 (4×4) Processing Elements (PEs), is tested with an image filtering application. Results show that it may properly recover from faults in up to 3 PEs, that is, more than 18% cumulative permanent faults. Two fault models are used for testing purposes, at PE and CLB levels. Two self-healing strategies are also introduced, depending on whether fault diagnosis is available or not. They are based on scrubbing, fitness evaluation, dynamic partial reconfiguration and in-system evolutionary adaptation. Since most of these adaptability features are already available on the system for its normal operation, resource cost for self-healing is very low (only some code additions in the internal microprocessor core)
Resumo:
Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain).
Resumo:
In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions.
Resumo:
We report growth of InAs/GaAs quantum dots (QDs) by molecular beam epitaxy with low density of 2 μm−2 by conversion of In nanocrystals deposited at low temperatures. The total amount of InAs used is about one monolayer, which is less than the critical thickness for conventional Stranski–Krastanov QDs. We also demonstrate the importance of the starting surface reconstruction for obtaining uniform QDs. The QD emission wavelength is easily tunable upon post-growth annealing with no wetting layer signal visible for short anneals. Microphotoluminescence measurements reveal well separated and sharp emission lines of individual QDs.
Resumo:
n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.
Resumo:
The implementation of wireless communication systems in rural areas through the deployment of data networks in infrastructure mode is often inadequate due to its high cost and no fault tolerant centralized structure. Mesh networks can overcome these limitations while increases the coverage area in a more flexible way. This paper proposes the performance evaluation of the routing protocols IEEE 802.11s and Batman-Adv on an experimental wireless mesh network deployed in a rural environment called Lachocc, which is a community located at 4700 MASL in the Huancavelica region in Peru. The evaluation was based on the measurement of quality of service parameters such as bandwidth, delay and delay variation. As a result, it was determined that both protocols offer a good performance, but in most of the cases, Batman-Adv provides slightly better performance
Resumo:
In this paper, an innovative approach to perform distributed Bayesian inference using a multi-agent architecture is presented. The final goal is dealing with uncertainty in network diagnosis, but the solution can be of applied in other fields. The validation testbed has been a P2P streaming video service. An assessment of the work is presented, in order to show its advantages when it is compared with traditional manual processes and other previous systems.
Resumo:
The city of Lorca (Spain) was hit on May 11th 2011 by two consecutive earthquakes with 4.6 and 5.2 Mw respectively, causing casualties and important damage in buildings. Lorca is located in the south-east region of Spain and settled on the trace of the Murcia-Totana-Lorca fault. Although the magnitudes of these ground motions were not severe, the damage observed was considerable over a great amount of buildings. More than 300 of them have been demolished and many others are being retrofitted. This paper reports a field study on the damage caused by these earthquakes. The observed damage is related with the structural typology. Further, prototypes of the damaged buildings are idealized with nonlinear numerical models and their seismic behavior and proneness to damage concentration is further investigated through dynamic response analyses.
Resumo:
In this paper fault detection and isolation (FDI) schemes are applied in the context of the surveillance of emerging faults in an electrical circuit. The FDI problem is studied on a noisy nonlinear circuit, where both abrupt and incipient faults in the voltage source are considered. A rigorous analysis of fault detectability precedes the application of the fault detection (FD) scheme; then, the fault isolation (FI) phase is accomplished with two alternative FI approaches, proposed as new extensions of that FD approach. Numerical simulations illustrate the applicability of the mentioned schemes.
Resumo:
This paper presents a new verification procedure for sound source coverage according to ISO 140?5 requirements. The ISO 140?5 standard applies to the measurement of façade insulation and requires a sound source able to achieve a sufficiently uniform sound field in free field conditions on the façade under study. The proposed method involves the electroacoustic characterisation of the sound source in laboratory free field conditions (anechoic room) and the subsequent prediction by computer simulation of the sound free field radiated on a rectangular surface equal in size to the façade being measured. The loudspeaker is characterised in an anechoic room under laboratory controlled conditions, carefully measuring directivity, and then a computer model is designed to calculate the acoustic free field coverage for different loudspeaker positions and façade sizes. For each sound source position, the method provides the maximum direct acoustic level differences on a façade specimen and therefore determines whether the loudspeaker verifies the maximum allowed level difference of 5 dB (or 10 dB for façade dimensions greater than 5 m) required by the ISO standard. Additionally, the maximum horizontal dimension of the façade meeting the standard is calculated and provided for each sound source position, both with the 5 dB and 10 dB criteria. In the last section of the paper, the proposed procedure is compared with another method used by the authors in the past to achieve the same purpose: in situ outdoor measurements attempting to recreate free field conditions. From this comparison, it is concluded that the proposed method is able to reproduce the actual measurements with high accuracy, for example, the ground reflection effect, at least at low frequencies, which is difficult to avoid in the outdoor measurement method, and it is fully eliminated with the proposed method to achieve the free field requisite.
Resumo:
An accepted fact in software engineering is that software must undergo verification and validation process during development to ascertain and improve its quality level. But there are too many techniques than a single developer could master, yet, it is impossible to be certain that software is free of defects. So, it is crucial for developers to be able to choose from available evaluation techniques, the one most suitable and likely to yield optimum quality results for different products. Though, some knowledge is available on the strengths and weaknesses of the available software quality assurance techniques but not much is known yet on the relationship between different techniques and contextual behavior of the techniques. Objective: This research investigates the effectiveness of two testing techniques ? equivalence class partitioning and decision coverage and one review technique ? code review by abstraction, in terms of their fault detection capability. This will be used to strengthen the practical knowledge available on these techniques.
Resumo:
In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.
Resumo:
In this paper, the applicability of the FRA technique is discussed as a method for detecting inter-turn faults in stator windings. Firstly, this method is tested in an individual medium-voltage stator coil with satisfactory results. Secondly, the tests are extended to a medium-voltage induction motor stator winding, in which inter-turn faults are performed in every coil end of one phase. Results of the frequency response in case of inter-turn faults are evaluated in both cases for different fault resistance values. The experimental setup is also described for each experiment. The results of the application of this technique to the detection of inter-turn faults justify further research in optimizing this technique for preventive maintenance.
Resumo:
Locating stator-winding ground faults accurately is a very difficult task. In this paper the grounding circuit measurements are evaluated in order to obtain information about the stator ground-fault location in synchronous generators. In power generators grounded through a high impedance, the relation between the neutral voltage and the phase voltage provide a first estimation of the fault location. The location error by using this ratio depends on the fault resistance and the value of the capacitance to ground of the stator winding. However, the error added by ignoring the value of the fault resistance is the most relevant term. This location estimation and the location error have been evaluated through the data of a real synchronous machine.
Resumo:
An extension of guarantees related to rainfall-related risks in the insurance of processing tomato crops has been accompanied with a large increase in claims in Western Spain, suggesting that damages may have been underestimated in previous years. A database was built by linking agricultural insurance records, meteorological data from local weather stations, and topographic data. The risk of rainfall-related damages in processing tomato in the Extremenian Guadiana river basin (W Spain) was studied using a logistic model. Risks during the growth of the crop and at harvesting were modelled separately. First, the risk related to rainfall was modelled as a function of meteorological, terrain and management variables. The resulting models were used to identify the variables responsible for rainfall-related damages, with a view to assess the potential impact of extending insurance coverage, and to develop an index to express the suitability of the cropping system for insurance. The analyses reveal that damages at different stages of crop development correspond to different hazards. The geographic dependence of the risk influences the scale at which the model might have validity, which together with the year dependency, the possibility of implementing index based insurances is questioned.