844 resultados para Failure time data analysis
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.
Resumo:
Braking is a crucial driving task with a direct relationship with crash risk, as both excess and inadequate braking can lead to collisions. The objective of this study was to compare the braking profile of young drivers distracted by mobile phone conversations to non-distracted braking. In particular, the braking behaviour of drivers in response to a pedestrian entering a zebra crossing was examined using the CARRS-Q Advanced Driving Simulator. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free, and handheld. In addition to driving the simulator, each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The drivers were 18–26 years old and split evenly by gender. A linear mixed model analysis of braking profiles along the roadway before the pedestrian crossing revealed comparatively increased decelerations among distracted drivers, particularly during the initial 20 kph of deceleration. Drivers’ initial 20 kph deceleration time was modelled using a parametric accelerated failure time (AFT) hazard-based duration model with a Weibull distribution with clustered heterogeneity to account for the repeated measures experiment design. Factors found to significantly influence the braking task included vehicle dynamics variables like initial speed and maximum deceleration, phone condition, and driver-specific variables such as licence type, crash involvement history, and self-reported experience of using a mobile phone whilst driving. Distracted drivers on average appear to reduce the speed of their vehicle faster and more abruptly than non-distracted drivers, exhibiting excess braking comparatively and revealing perhaps risk compensation. The braking appears to be more aggressive for distracted drivers with provisional licenses compared to drivers with open licenses. Abrupt or excessive braking by distracted drivers might pose significant safety concerns to following vehicles in a traffic stream.
Resumo:
The present study examines empirically the inflation dynamics of the euro area. The focus of the analysis is on the role of expectations in the inflation process. In six articles we relax rationality assumption and proxy expectations directly using OECD forecasts or Consensus Economics survey data. In the first four articles we estimate alternative Phillips curve specifications and find evidence that inflation cannot instantaneously adjust to changes in expectations. A possible departure of expectations from rationality seems not to be powerful enough to totally explain the persistence of euro area inflation in the New Keynesian framework. When expectations are measured directly, the purely forward-looking New Keynesian Phillips curve is outperformed by the hybrid Phillips curve with an additional lagged inflation term and the New Classical Phillips curve with a lagged expectations term. The results suggest that the euro area inflation process has become more forward-looking in the recent years of low and stable inflation. Moreover, in low inflation countries, the inflation dynamics have been more forward-looking already since the late 1970s. We find evidence of substantial heterogeneity of inflation dynamics across the euro area countries. Real time data analysis suggests that in the euro area real time information matters most in the expectations term in the Phillips curve and that the balance of expectations formation is more forward- than backward-looking. Vector autoregressive (VAR) models of actual inflation, inflation expectations and the output gap are estimated in the last two articles.The VAR analysis indicates that inflation expectations, which are relatively persistent, have a significant effect on output. However,expectations seem to react to changes in both output and actual inflation, especially in the medium term. Overall, this study suggests that expectations play a central role in inflation dynamics, which should be taken into account in conducting monetary policy.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
This article provides a review of techniques for the analysis of survival data arising from respiratory health studies. Popular techniques such as the Kaplan–Meier survival plot and the Cox proportional hazards model are presented and illustrated using data from a lung cancer study. Advanced issues are also discussed, including parametric proportional hazards models, accelerated failure time models, time-varying explanatory variables, simultaneous analysis of multiple types of outcome events and the restricted mean survival time, a novel measure of the effect of treatment.
Resumo:
Background: Several models have been designed to predict survival of patients with heart failure. These, while available and widely used for both stratifying and deciding upon different treatment options on the individual level, have several limitations. Specifically, some clinical variables that may influence prognosis may have an influence that change over time. Statistical models that include such characteristic may help in evaluating prognosis. The aim of the present study was to analyze and quantify the impact of modeling heart failure survival allowing for covariates with time-varying effects known to be independent predictors of overall mortality in this clinical setting. Methodology: Survival data from an inception cohort of five hundred patients diagnosed with heart failure functional class III and IV between 2002 and 2004 and followed-up to 2006 were analyzed by using the proportional hazards Cox model and variations of the Cox's model and also of the Aalen's additive model. Principal Findings: One-hundred and eighty eight (188) patients died during follow-up. For patients under study, age, serum sodium, hemoglobin, serum creatinine, and left ventricular ejection fraction were significantly associated with mortality. Evidence of time-varying effect was suggested for the last three. Both high hemoglobin and high LV ejection fraction were associated with a reduced risk of dying with a stronger initial effect. High creatinine, associated with an increased risk of dying, also presented an initial stronger effect. The impact of age and sodium were constant over time. Conclusions: The current study points to the importance of evaluating covariates with time-varying effects in heart failure models. The analysis performed suggests that variations of Cox and Aalen models constitute a valuable tool for identifying these variables. The implementation of covariates with time-varying effects into heart failure prognostication models may reduce bias and increase the specificity of such models.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
The passenger response time distributions adopted by the International Maritime Organisation (IMO)in their assessment of the assembly time for passanger ships involves two key assumptions. The first is that the response time distribution assumes the form of a uniform random distribution and the second concerns the actual response times. These two assumptions are core to the validity of the IMO analysis but are not based on real data, being the recommendations of an IMO committee. In this paper, response time data collected from assembly trials conducted at sea on a real passanger vessel using actual passangers are presented and discussed. Unlike the IMO specified response time distributions, the data collected from these trials displays a log-normal distribution, similar to that found in land based environments. Based on this data, response time distributions for use in the IMO assesmbly for the day and night scenarios are suggested
A bivariate regression model for matched paired survival data: local influence and residual analysis
Resumo:
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.
New methods for quantification and analysis of quantitative real-time polymerase chain reaction data
Resumo:
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^
Resumo:
The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.