938 resultados para Event–based tasks
Resumo:
Background Many studies have suggested that adolescence is a period of particular vulnerability to neurocognitive effects associated with substance misuse. However, few large studies have measured differences in cognitive performance between chronic cannabis users who started in early adolescence (before age 15) with those who started later. Aims To examine the executive functioning of individuals who started chronic cannabis use before age 15 compared with those who started chronic cannabis use after 15 and controls. Method We evaluated the performance of 104 chronic cannabis users (49 early-onset users and 55 late-onset users) and 44 controls who undertook neuropsychological tasks, with a focus on executive functioning. Comparisons involving neuropsychological measures were performed using generalised linear model analysis of variance (ANOVA). Results The early-onset group showed significantly poorer performance compared with the controls and the late-onset group on tasks assessing sustained attention, impulse control and executive functioning. Conclusions Early-onset chronic cannabis users exhibited poorer cognitive performance than controls and late-onset users in executive functioning. Chronic cannabis use, when started before age 15, may have more deleterious effects on neurocognitive functioning.
Resumo:
Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort. (JINS, 2011, 17, 485-493)
Resumo:
In positive serial conditional discrimination, animals respond during a target stimulus when it is preceded by a feature stimulus, but they do not respond when the same target stimulus is presented alone. Moreover, the feature and target stimuli are separated from each other by an empty interval. The present work aimed to investigate if two durations (4 or 16s) of the same feature stimulus (light) could modulate the operant responses of rats to different levers (A and B) during a 5-s target stimulus (tone). In the present study, lever A was associated with the 4-s light, and lever B was associated with the 16-s light. A 5-s empty interval was included between the light and the tone. In the same training procedure, the rats were also presented with the 5-s tone without the preceding light stimuli. In these trials, the responses were not reinforced. We evaluated the hippocampal involvement of these behavioral processes by selectively lesioning the dentate gyrus with colchicine. Once trained, the rats were submitted to a test using probe trials without reinforcement. They were presented with intermediate durations of the feature stimulus (light) to obtain a temporal bisection curve recorded during the exposure to the target stimuli. The rats from both groups learned to respond with high rates during tones preceded by light and with low rates during tones presented alone, which indicated acquisition of the serial conditional discrimination. The rats were able to discriminate between the 4- and 16-s lights by correctly choosing lever A or B. In the test, the temporal bisection curves from both experimental groups showed a bisection point at the arithmetic mean between 4 and 16s. Such processes were not impaired by the dentate gyrus lesion. Thus, our results showed that different durations of a feature stimulus could result in conditional properties. However, this processing did not appear to depend on the dentate gyrus alone. (C) 2011 Published by Elsevier B.V.
Resumo:
In the design of lattice domes, design engineers need expertise in areas such as configuration processing, nonlinear analysis, and optimization. These are extensive numerical, iterative, and lime-consuming processes that are prone to error without an integrated design tool. This article presents the application of a knowledge-based system in solving lattice-dome design problems. An operational prototype knowledge-based system, LADOME, has been developed by employing the combined knowledge representation approach, which uses rules, procedural methods, and an object-oriented blackboard concept. The system's objective is to assist engineers in lattice-dome design by integrating all design tasks into a single computer-aided environment with implementation of the knowledge-based system approach. For system verification, results from design examples are presented.
Resumo:
Recent interest in the development and evolution of theory of mind has provided a wealth of information about representational skills in both children and animals, According to J, Perrier (1991), children begin to entertain secondary representations in the 2nd year of life. This advance manifests in their passing hidden displacement tasks, engaging in pretense and means-ends reasoning, interpreting external representations, displaying mirror self-recognition and empathic behavior, and showing an early understanding of mind and imitation. New data show a cluster of mental accomplishments in great apes that is very similar to that observed in 2-year-old humans. It is suggested that it is most parsimonious to assume that this cognitive profile is of homologous origin and that great apes possess secondary representational capacity. Evidence from animals other than apes is scant. This analysis leads to a number of predictions for future research.
Resumo:
The spectral sensitivities of avian retinal photoreceptors are examined with respect to microspectrophotometric measurements of single cells, spectrophotometric measurements of extracted or in vitro regenerated visual pigments, and molecular genetic analyses of visual pigment opsin protein sequences. Bird species from diverse orders are compared in relation to their evolution, their habitats and the multiplicity of visual tasks they must perform. Birds have five different types of visual pigment and seven different types of photo receptor-rods, double (uneven twin) cones and four types of single cone. The spectral locations of the wavelengths of maximum absorbance (lambda (max)) of the different visual pigments, and the spectral transmittance characteristics of the intraocular spectral filters (cone oil droplets) that also determine photoreceptor spectral sensitivity, vary according to both habitat and phylogenetic relatedness. The primary influence on avian retinal design appears to be the range of wavelengths available for vision, regardless of whether that range is determined by the spectral distribution of the natural illumination or the spectral transmittance of the ocular media (cornea, aqueous humour, lens, vitreous humour). Nevertheless, other variations in spectral sensitivity exist that reflect the variability and complexity of avian visual ecology. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Examining housework patterns in cohabiting and married couples and the impact of the experience of cohabitation on subsequent domestic labour patterns within marriage - women do a much larger proportion of child care and routine indoor housework tasks than men, regardless of marital status - the gender division of labour between cohabiting partners is less traditional for women with less time spent on domestic labour than married women.
Resumo:
The present research investigated attentional blink startle modulation at lead intervals of 60, 240 and 3500 ms. Letters printed in Gothic or standard fonts, which differed in rated interest, but not valence, served as lead stimuli. Experiment I established that identifying letters as vowels/consonants took longer than reading the letters and that performance in both tasks was slower if letters were printed in Gothic font. In Experiment 2, acoustic blink eliciting stimuli were presented 60, 240 and 3500 ms after onset of the letters in Gothic and in standard font and during intertrial intervals. Half the participants (Group Task) were asked to identify the letters as vowels/consonants whereas the others (Group No-Task) did not perform a task. Relative to control responses, blinks during letters were facilitated at 60 and 3500 ms lead intervals and inhibited at the 240 ms lead interval for both conditions in Group Task. Differences in blink modulation across lead intervals were found in Group No-Task only during Gothic letters with blinks at the 3500 ms lead interval facilitated relative to control blinks. The present results confirm previous findings indicating that attentional processes can modulate startle at very short lead intervals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
To support student learning in a large Metabolism and Nutrition class, we have introduced a web-based package, using a commercially available program, WebCT. The package was developed at a minimal cost and with limited resources. In addition to downloadable (PDF) versions of lecture Powerpoint presentations, tutorial outlines and a practical class exercise, web-based self-directed learning exercises were included to reinforce and extend lecture material in an active learning environment. The web-site also contained a variety of formative and summative assessment tasks that examined both factual recall and higher order thinking Detailed course information, timetables and a bulletin board were also readily accessible. Student usage of the site was generally high, but varied widely between individual students. Students who achieved a high overall score for the course completed on average three times as many formative assessment items and achieved a higher score for all tests than students who did poorly. Student feedback about the site was very positive with the majority of students reporting that the course material and assessment items that were available were useful to their learning. Administration of the course was also facilitated. (C) 2001 IUBMB. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Numerous everyday tasks require the nervous system to program a prehensile movement towards a target object positioned in a cluttered environment. Adult humans are extremely proficient in avoiding contact with any non-target objects (obstacles) whilst carrying out such movements. A number of recent studies have highlighted the importance of considering the control of reach-to-grasp (prehension) movements in the presence of such obstacles. The current study was constructed with the aim of beginning the task of studying the relative impact on prehension as the position of obstacles is varied within the workspace. The experimental design ensured that the obstacles were positioned within the workspace in locations where they did not interfere physically with the path taken by the hand when no obstacle was present. In all positions, the presence of an obstacle caused the hand to slow down and the maximum grip aperture to decrease. Nonetheless, the effect of the obstacle varied according to its position within the workspace. In the situation where an obstacle was located a small distance to the right of a target object, the obstacle showed a large effect on maximum grip aperture but a relatively small effect on movement time. In contrast, an object positioned in front and to the right of a target object had a large effect on movement speed but a relatively small effect on maximum grip aperture. It was found that the presence of two obstacles caused the system to decrease further the movement speed and maximum grip aperture. The position of the two obstacles dictated the extent to which their presence affected the movement parameters. These results show that the antic ipated likelihood of a collision with potential obstacles affects the planning of movement duration and maximum grip aperture in prehension.
Resumo:
It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks. We review a small number of experiments that provide evidence that resistance training affects the way in which muscles that have been engaged during training are recruited during related movement tasks. The concepts addressed in this article represent an important new approach to research on the effects of resistance training. They are also of considerable practical importance, since most individuals perform resistance training in the expectation that it will enhance their performance in-related functional tasks.
Resumo:
There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the ldquoblack boxrdquo between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.
Resumo:
C. L. Isaac and A. R. Mayes (1999a, 1999b) compared forgetting rates in amnesic patients and normal participants across a range of memory tasks. Although the results are complex, many of them appear to be replicable and there are several commendable features to the design and analysis. Nevertheless, the authors largely ignored 2 relevant literatures: the traditional literature on proactive inhibition/interference and the formal analyses of the complexity of the bindings (associations) required for memory tasks. It is shown how the empirical results and conceptual analyses in these literatures are needed to guide the choice of task, the design of experiments, and the interpretation of results for amnesic patients and normal participants.
Resumo:
Recent semantic priming investigations in Parkinsons disease (PD) employed variants of Neelys (1977) lexical decision paradigm to dissociate the automatic and attentional aspects of semantic activation (McDonald, Brown, Gorell, 1996; Spicer, Brown, Gorell, 1994). In our earlier review, we claimed that the results of Spicer, McDonald and colleagues normal control participants violated the two-process model of information processing (Posner Snyder, 1975) upon which their experimental paradigm had been based (Arnott Chenery, 1999). We argued that, even at the shortest SOA employed, key design modifications to Neelys original experiments biased the tasks employed by Spicer et al. and McDonald et al. towards being assessments of attention-dependent processes. Accordingly, we contended that experimental procedures did not speak to issues of automaticity and, therefore, Spicer, McDonald and colleagues claims of robust automatic semantic activation in PD must be treated with caution.