825 resultados para Enrico Fermi Atomic Power Plant.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the results of a project aimed at minimising fuel usage while maximising steam availability in the power and steam plant of a large newsprint mill. The approach taken was to utilise the better regulation and plant wide optimisation capabilities of Advanced Process Control, especially Model Predictive Control (MPC) techniques. These have recently made their appearance in the pulp and paper industry but are better known in the oil and petrochemical industry where they have been used for nearly 30 years. The issue in the power and steam plant is to ensure that sufficient steam is available when the paper machines require it and yet not to have to waste too much steam when one or more of the machines suffers an outage. This is a problem for which MPC is well suited. It allows variables to be kept within declared constraint ranges, a feature which has been used, effectively, to increase the steam storage capacity of the existing plant. This has resulted in less steam being condensed when it is not required and in significant reductions in the need for supplementary firing. The incidence of steam being dump-condensed while also supplementary firing the Combined Heat & Power (CHP) plant has been reduced by 95% and the overall use of supplementary firing is less than 30% of what it was. In addition the plant runs more smoothly and requires less operator time. The yearly benefit provided by the control system is greater than £200,000, measured in terms of 2005 gas prices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we analyzed the operational characteristics of a 1.2-MW rice husk gasification and power generation plant located in Changxing, Zhejiang province, China. The influences of gasification temperature, equivalence ratio (ER), feeding rate and rice husk water content on the gasification characteristics in a fluidized bed gasifier were investigated. The axial temperature profile in the dense phase of the gasifier showed that inadequate fluidization occurred inside the bed, and that the temperature was closely related to changes in ER and feeding rate. The bed temperature increased linearly with increasing ER when the feeding rate was kept constant, while a higher feeding rate corresponded to a lower bed temperature at fixed ER. The gas heating value decreased with increasing temperature, while the feeding rate had little effect. When the gasification temperature was 700-800C, the gas heating value ranged from 5450-6400kJ/Nm3. The water content of the rice husk had an obvious influence on the operation of the gasifier: increases in water content up to 15% resulted in increasing ER and gas yield, while water contents above 15% caused aberrant temperature fluctuations. The problems in this plant are discussed in the light of operational experience of MW-scale biomass gasification and power generation plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al2O3 interfacial layer (∼2.8 nm). For diodes with an Al2O3 interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO2 interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biomass is an important source of energy in Thailand and is currently the main renewable energy source, accounting for 40% of the renewable energy used. The Department of Alternative Energy and E�ciency (DEDE), Ministry of Thailand, has been promoting the use of renewable energy in Thailand for the past decade. The new target for renewable energy usage in the country is set at 25% of the �nal energy demand in 2021. Thailand is the world’s fourth largest producer of cassava and this results in the production of signi�cant amounts of cassava rhizome which is a waste product. Cassava rhizome has the potential to be co-�red with coal for the production of heat and power. With suitable co-�ring ratios, little modi�cation will be required in the co-�ring technology. This review article is concerned with an investigation of the feasibility of co-�ring cassava rhizome in a combined heat and power system for a cassava based bio-ethanol plant in Thailand. Enhanced use of cassava rhizome for heat and power production could potentially contribute to a reduction of greenhouse gas emissions and costs, and would help the country to meet the 2021 renewable energy target.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal generation is a vital component of mature and reliable electricity markets. As the share of renewable electricity in such markets grows, so too do the challenges associated with its variability. Proposed solutions to these challenges typically focus on alternatives to primary generation, such as energy storage, demand side management, or increased interconnection. Less attention is given to the demands placed on conventional thermal generation or its potential for increased flexibility. However, for the foreseeable future, conventional plants will have to operate alongside new renewables and have an essential role in accommodating increasing supply-side variability. This paper explores the role that conventional generation has to play in managing variability through the sub-system case study of Northern Ireland, identifying the significance of specific plant characteristics for reliable system operation. Particular attention is given to the challenges of wind ramping and the need to avoid excessive wind curtailment. Potential for conflict is identified with the role for conventional plant in addressing these two challenges. Market specific strategies for using the existing fleet of generation to reduce the impact of renewable resource variability are proposed, and wider lessons from the approach taken are identified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24°C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at -5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. © 2013 Elsevier Ltd. All rights reserved.