820 resultados para Engineering teaching process
Resumo:
Requirements Engineering has been acknowledged an essential discipline for Software Quality. Poorly-defined processes for eliciting, analyzing, specifying and validating requirements can lead to unclear issues or misunderstandings on business needs and project’s scope. These typically result in customers’ non-satisfaction with either the products’ quality or the increase of the project’s budget and duration. Maturity models allow an organization to measure the quality of its processes and improve them according to an evolutionary path based on levels. The Capability Maturity Model Integration (CMMI) addresses the aforementioned Requirements Engineering issues. CMMI defines a set of best practices for process improvement that are divided into several process areas. Requirements Management and Requirements Development are the process areas concerned with Requirements Engineering maturity. Altran Portugal is a consulting company concerned with the quality of its software. In 2012, the Solution Center department has developed and applied successfully a set of processes aligned with CMMI-DEV v1.3, what granted them a Level 2 maturity certification. For 2015, they defined an organizational goal of addressing CMMI-DEV maturity level 3. This MSc dissertation is part of this organization effort. In particular, it is concerned with the required process areas that address the activities of Requirements Engineering. Our main goal is to contribute for the development of Altran’s internal engineering processes to conform to the guidelines of the Requirements Development process area. Throughout this dissertation, we started with an evaluation method based on CMMI and conducted a compliance assessment of Altran’s current processes. This allowed demonstrating their alignment with the CMMI Requirements Management process area and to highlight the improvements needed to conform to the Requirements Development process area. Based on the study of alternative solutions for the gaps found, we proposed a new Requirements Management and Development process that was later validated using three different approaches. The main contribution of this dissertation is the new process developed for Altran Portugal. However, given that studies on these topics are not abundant in the literature, we also expect to contribute with useful evidences to the existing body of knowledge with a survey on CMMI and requirements engineering trends. Most importantly, we hope that the implementation of the proposed processes’ improvements will minimize the risks of mishandled requirements, increasing Altran’s performance and taking them one step further to the desired maturity level.
Resumo:
Currently, it is widely perceived among the English as a Foreign Language (EFL) teaching professionals, that motivation is a central factor for success in language learning. This work aims to examine and raise teachers’ awareness about the role of assessment and feedback in the process of language teaching and learning at polytechnic school in Benguela to develop and/or enhance their students’ motivation for learning. Hence the paper defines and discusses the key terms and, the techniques and strategies for an effective feedback provision in the context under study. It also collects data through the use of interview and questionnaire methods, and suggests the assessment and feedback types to be implemented at polytechnic school in Benguela
Resumo:
INTRODUCTION: Vancomycin-resistant enterococci (VRE) can colonize or cause infections in high-risk patients and contaminate the environment. Our objective was to describe theepidemiological investigation of an outbreak of VRE, the interventions made, and their impact on its control. METHODS: We conducted a retrospective, descriptive, non-comparative study by reviewing the charts of patients with a VRE-positive culture in the University Hospital of Campinas State University, comprising 380 beds, 40 of which were in intensive care units (ICUs), who were admitted from February 2008-January 2009. Interventions were divided into educational activity, reviewing the workflow processes, engineering measures, and administrative procedures. RESULTS: There were 150 patients, 139 (92.7%) colonized and 11 (7.3%) infected. Seventy-three percent were cared for in non-ICUs (p = 0.028). Infection was more frequent in patients with a central-line (p = 0.043), mechanical ventilation (p = 0.013), urinary catheter (p = 0.049), or surgical drain (p = 0.049). Vancomycin, metronidazole, ciprofloxacin, and third-generation cephalosporin were previously used by 47 (31.3%), 31 (20.7%), 24 (16%), and 24 (16%) patients, respectively. Death was more frequent in infected (73%) than in colonized (17%) patients (p < 0.001). After the interventions, the attack rate fell from 1.49 to 0.33 (p < 0.001). CONCLUSIONS: Classical risk factors for VRE colonization or infection, e.g., being cared for in an ICU and previous use of vancomycin, were not found in this study. The conjunction of an educational program, strict adhesion to contact precautions, and reinforcement of environmental cleaning were able to prevent the dissemination of VRE.
Resumo:
This Work Project studies the Continuous Improvement and Processes (CIP) department at TAP Maintenance & Engineering. The project has the objective to provide insights to align the activities of the department with the strategy of the organization. For such, two focuses were taken: (i) an internal analysis which highlighted a need for transversal change to ensure the adoption of Continuous Improvement at TAP, and (ii) a process which outlined objectives and projects to be pursued to prioritize CIP’s activities in accordance with the organization’s goals. The outcome includes (a) important recommendations concerning strategic planning and competition evaluation and (b) a process’ output that reflects a balance among factors influencing the priority of projects.
Resumo:
Based on the report for the unit “Métodos Interactivos de Participação e Decisão A” (Interactive methods of participation and decision A), coordinated by Prof. Lia Maldonado Teles de Vasconcelos and Prof. Nuno Miguel Ribeiro Videira Costa. This unit was provided for the PhD Program in Technology Assessment in 2015/2016.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Resumo:
Higher education in Portugal, in the last forty years, has undergone profound changes with the enlargement of public higher education network, the appearance of new institutions, the quantity and the heterogeneity of students. The implementation of the Bologna Process in European community countries led to the redesign of higher education Portuguese courses as well as their corresponding curricula. In recent years, the use of Project-led education was one of the most significant changes in teaching and learning, particularly in engineering in higher education in Portugal. This teaching methodology encourages students and teachers to undertake new roles, new responsibilities and a new learning perspective. This study aims at understanding whether the role of the tutor is to be suitable to the needs and expectations of Project-led education students. These changes however are not only structural. At the University of Minho, new teaching and learning methodologies were adopted, which could guide the training of professionals on to the twenty-first century. The opportunity arising from the implementation of Project-led education in Engineering methodology was used in the University of Minho’s courses. This teaching method is intended to provide students with educational support programs that benefit the academic performance, allowing the opportunity to upgrade, train and develop the ability to study and learn more effectively. Through the Project-led education it is possible to provide students with techniques and procedures and develop the ability to communicate orally and in writing. Students and teachers have assumed new roles in the teaching-learning process allowing in one hand the students to explore, discover and question themselves about some knowledge and on the other hand the teachers to change to a tutor, a companion and to a student project guide. Therefore, surveys were analyzed, comprising questions about the most significant contribution of the tutor as well as if there are some initial expectations that have not been foreseen by the tutor.
Resumo:
The performance of parts produced by Free Form Extrusion (FFE), an increasingly popular additive manufacturing technique, depends mainly on their dimensional accuracy, surface quality and mechanical performance. These attributes are strongly influenced by the evolution of the filament temperature and deformation during deposition and solidification. Consequently, the availability of adequate process modelling software would offer a powerful tool to support efficient process set-up and optimisation. This work examines the contribution to the overall heat transfer of various thermal phenomena developing during the manufacturing sequence, including convection and radiation with the environment, conduction with support and between adjacent filaments, radiation between adjacent filaments and convection with entrapped air. The magnitude of the mechanical deformation is also studied. Once this exercise is completed, it is possible to select the material properties, process variables and thermal phenomena that should be taken in for effective numerical modelling of FFE.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
The monitoring data collected during tunnel excavation can be used in inverse analysis procedures in order to identify more realistic geomechanical parameters that can increase the knowledge about the interested formations. These more realistic parameters can be used in real time to adapt the project to the real structure in situ behaviour. However, monitoring plans are normally designed for safety assessment and not especially for the purpose of inverse analysis. In fact, there is a lack of knowledge about what types and quantity of measurements are needed to succeed in identifying the parameters of interest. Also, the optimisation algorithm chosen for the identification procedure may be important for this matter. In this work, this problem is addressed using a theoretical case with which a thorough parametric study was carried out using two optimisation algorithms based on different calculation paradigms, namely a conventional gradient-based algorithm and an evolution strategy algorithm. Calculations were carried for different sets of parameters to identify several combinations of types and amount of monitoring data. The results clearly show the high importance of the available monitoring data and the chosen algorithm for the success rate of the inverse analysis process.
Resumo:
Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.
Resumo:
When representing the requirements for an intended software solution during the development process, a logical architecture is a model that provides an organized vision of how functionalities behave regardless of the technologies to be implemented. If the logical architecture represents an ambient assisted living (AAL) ecosystem, such representation is a complex task due to the existence of interrelated multidomains, which, most of the time, results in incomplete and incoherent user requirements. In this chap- ter, we present the results obtained when applying process-level modeling techniques to the derivation of the logical architecture for a real industrial AAL project. We adopt a V-Model–based approach that expresses the AAL requirements in a process-level perspec- tive, instead of the traditional product-level view. Additionally, we ensure compliance of the derived logical architecture with the National Institute of Standards and Technology (NIST) reference architecture as nonfunctional requirements to support the implementa- tion of the AAL architecture in cloud contexts.
Resumo:
Dissertação de mestrado integrado em Mechanical Engineering
Resumo:
Tese de Doutoramento em Ciências da Educação (área de especilização em Desenvolvimento Curricular).
Resumo:
Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility.