497 resultados para Efflux
Resumo:
Neospora caninum is an obligate intracellular parasite classified in the phylum Apicomplexa, characterized by the presence of the apical complex composed by micronemes proteins, rhoptries and dense granules, used by parasite during the adhesion and invasion process of the host cell. This is the mean event in infection pathogenesis generated by N. caninum and other parasites from the phylum Apicomplexa, promoting influence in the parasite biology and the interface between the parasite and its host. Therefore, molecular tools have been developed in order to identify and characterize these possible virulence factors. Thus, the present study sought to establish a specific system of genetic manipulation of N. caninum, searching for the improvement of the genetics manipulation of this parasite. So, we developed genetically depleted N. caninum to Rop9 rhoptry using the pU6-Universal CRISPR-Cas9 plasmid of T. gondii modified by the insertion of Ku80. The Rop9 depleted parasite showed important during initial phase of invasion and replication of the parasite, however it was not characterized as a potential virulence fator for N. caninum. Furthermore, T. gondii proteins were expressed in N. caninum by the use of specific vectors for this parasite, showing an heterologous system for the study of Toxoplasma proteins, due to the fact that Gra15 or Gra24 of type II T. gondii and Rop16 of type I T. gondii were expressed in N. caninum tachyzoites in a stable way and keept its biological phenotype, as already presented the former parasite, that naturaly expresses these proteins. In addition, it was observed that N. caninum induced an inflammasome activation through NLRP3, ASC and Caspase-1. IL-1R/MyD88 demonstrated an indirect pathway in the control of parasite replication. Furthermore, it was observed that this activation is dependent of the potassium efflux and that different strains of N. caninum keep this activation profile. However, T. gondii strains block this activation, making necessary a prior signal in order to active the inflamosome pathway. Type I T. gondii Rop16 was identified as responsible for blocking this activation, in a dependent way to the STAT3 activation. Therefore, the development of molecular tools and their application in N. caninum may prove to be useful to identify and characterize virulent factors involved in the pathogenesis by these two protozoans.
Resumo:
Acknowledgements. We would like to acknowledge the manufacturers of the inner toroid: Mark Bentley and Steve Howarth from the University of York, Dept. of Biology, mechanical and electronics workshops respectively. Furthermore, we would like to acknowledge the Forestry Commission for access and aid at Wheldrake Forest, Mike Bailey and Natural Resources Wales for access and assistance at Cors Fochno, and Norrie Russell and the Royal Society for the Protection of Birds for access and aid at Forsinard. We would also like to thank Graham Hambley, James Robinson, and Elizabeth Donkin for equipment preparation and sampling. Phil Ineson is thanked for the loan of essential equipment, site suggestions, and accessible power supply. Funding was provided by the University of York, Dept. of Biology, and by a grant to YAT by the UK Natural Environment Research Council (NE/H01182X/1).
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
De nouveaux modèles cellulaires in vitro par transfert de milieu et par coculture ont été mis au point afin d’évaluer la capacité des HDL à éliminer l’excès de cholestérol des tissus périphériques et de le transporter vers le foie afin d’être excrété par le foie, un processus nommé le transport inverse du cholestérol (TIC). Le système cellulaire par transfert in vitro où des macrophages J774 sont gorgés de LDL acétylées et marqués au 3H-cholestérol a été préalablement établi afin de mesurer par scintillation l’efflux de cholestérol marqué vers le milieu de culture contenant des accepteurs de cholestérol. Ce milieu conditionné est transféré sur des cellules HepG2 afin d’étudier l’influx du cholestérol marqué. Ce dernier nous permet d’observer un transport de cholestérol de 25 % hors des J774 et un transport de 39 000 cpm dans les HepG2 en utilisant un milieu contenant 2 % de sérums humains mis en commun. Une stimulation des cellules J774 par l’AMPc augmente l’efflux et l’influx d’environ 45 %. Des tests de preuve de concept ont été effectués sur le système cellulaire par co-culture qui utilise des chambres de Boyden où les J774 sont localisées au fond d’un puits et les HepG2 dans un insert, et où le milieu est partagé entre les deux types cellulaires. On a déterminé qu’une confluence densité de 60 000 cellules/cm2 sur un insert constitué d’une membrane de polyester avec des pores de 3,0 μm, sans autre revêtement, permet d’observer un influx spécifique au sérum d’environ 6 000 cpm associés aux cellules HepG2, où 50 % des comptes radioactifs sont dans les cellules et l’autre moitié présente à la surface cellulaire.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
High acoustic seafloor-backscatter signals characterize hundreds of patches of methane-derived authigenic carbonates and chemosynthetic communities associated with hydrocarbon seepage on the Nile Deep Sea Fan (NDSF) in the Eastern Mediterranean Sea. During a high-resolution ship-based multibeam survey covering a ~ 225 km**2 large seafloor area in the Central Province of the NDSF we identified 163 high-backscatter patches at water depths between 1500 and 1800 m, and investigated the source, composition, turnover, flux and fate of emitted hydrocarbons. Systematic Parasound single beam echosounder surveys of the water column showed hydroacoustic anomalies (flares), indicative of gas bubble streams, above 8% of the high-backscatter patches. In echosounder records flares disappeared in the water column close to the upper limit of the gas hydrate stability zone located at about 1350 m water depth due to decomposition of gas hydrate skins and subsequent gas dissolution. Visual inspection of three high-backscatter patches demonstrated that sediment cementation has led to the formation of continuous flat pavements of authigenic carbonates typically 100 to 300 m in diameter. Volume estimates, considering results from high-resolution autonomous underwater vehicle (AUV)-based multibeam mapping, were used to calculate the amount of carbonate-bound carbon stored in these slabs. Additionally, the flux of methane bubbles emitted at one high-backscatter patch was estimated (0.23 to 2.3 × 10**6 mol a**-1) by combined AUV flare mapping with visual observations by remotely operated vehicle (ROV). Another high-backscatter patch characterized by single carbonate pieces, which were widely distributed and interspaced with sediments inhabited by thiotrophic, chemosynthetic organisms, was investigated using in situ measurements with a benthic chamber and ex situ sediment core incubation and allowed for estimates of the methane consumption (0.1 to 1 × 10**6 mol a**-1) and dissolved methane flux (2 to 48 × 10**6 mol a**-1). Our comparison of dissolved and gaseous methane fluxes as well as methane-derived carbonate reservoirs demonstrates the need for quantitative assessment of these different methane escape routes and their interaction with the geo-, bio-, and hydrosphere at cold seeps.
Resumo:
Current evidence indicates that chylomicron remnants (CMR) induce macrophage foam cell formation, an early event in atherosclerosis. Inflammation also plays a part in atherogenesis and the transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated. In this study, the influence of CMR on the activity of NF-kappaB in macrophages and its modulation by the fatty acid composition of the particles were investigated using macrophages derived from the human monocyte cell line THP-1 and CMR-like particles (CRLPs). Incubation of THP-1 macrophages with CRLPs caused decreased NF-kappaB activation and downregulated the expression of phospho-p65-NF-kappaB and phospho-IkappaBalpha (pIkappaBalpha). Secretion of the inflammatory cytokines tumour necrosis factor alpha, interleukin-6 and monocyte chemoattractant protein-1, which are under NF-kappaB transcriptional control, was inhibited and mRNA expression for cyclooxygenase-2, an NF-kappaB target gene, was reduced. CRLPs enriched in polyunsaturated fatty acids compared with saturated or monounsaturated fatty acids had a markedly greater inhibitory effect on NF-kappaB binding to DNA and the expression of phospho-p65-NF-kappaB and pIkappaB. Lipid loading of macrophages with CRLPs enriched in polyunsaturated fatty acids compared with monounsaturated fatty acids or saturated fatty acids also increased the subsequent rate of cholesterol efflux, an effect which may be linked to the inhibition of NF-kappaB activity. These findings demonstrate that CMR suppress NF-kappaB activity in macrophages, and that this effect is modulated by their fatty acid composition. This downregulation of inflammatory processes in macrophages may represent a protective effect of CMR which is enhanced by dietary polyunsaturated fatty acids.
Resumo:
The accumulation of foam cells in the artery wall causes fatty streaks, the first lesions in atherosclerosis. LDL (low-density lipoprotein) plays a major role in foam cell formation, although prior oxidation of the particles is required. Recent studies, however, have provided considerable evidence to indicate that CMRs (chylomicron remnants), which carry dietary lipids in the blood, induce foam cell formation without oxidation. We have shown that CMRs are taken up by macrophages and induce accumulation of both triacylglycerol and cholesterol, and that the rate of uptake and amount of lipid accumulated is influenced by the type of dietary fat in the particles. Furthermore, oxidation of CMRs, in striking contrast with LDL, inhibits, rather than enhances, their uptake and induction of lipid accumulation. In addition, the lipid accumulated after exposure of macrophages to CMRs is resistant to efflux, and this may be due to its sequestration in lysosomes. These findings demonstrate that CMRs induce pro-atherogenic changes in macrophages, and that their effects may be modulated by dietary factors including oxidized fats, lipophilic antioxidants and the type of fat present.
Resumo:
O cancro é um dos maiores causadores globais de mortalidade e morbilidade, ocorrendo cerca de 14 milhões de novos casos por ano e 8,2 milhões de mortes anuais com esta patologia, números que tendem a aumentar 70% nas próximas duas décadas. A característica tumoral mais nefasta é a sua capacidade de metastização para outros órgãos, um mecanismo que pode ser despoletado pela falha dos mecanismos normais de controlo de crescimento, proliferação e reparação celulares, que facilita o processo de transformação de células normais em células cancerígenas. A oncogénese processa-se em três etapas, a iniciação, a promoção e a progressão e pode ter origem em células estaminais cancerígenas, que regulam as capacidades de propagação e recidiva do tumor. As neoplasias hematológicas resultam de alterações genéticas e /ou epigenéticas que conduzem à desregulação da proliferação, ao bloqueio da diferenciação e/ou à resitência à apoptose. Para além dos fatores de risco exógenos, como agentes carcinogénicos físicos, químicos e biológicos, existem também fatores endógenos, incluindo características genéticas, que podem alterar a predisposição para o aparecimento de neoplasias, bem como influenciar a resposta à terapêutica. Uma das terapêuticas aplicadas no tratamento do cancro é a quimioterapia. Os fármacos administrados a doentes oncológicos seguem normalmente o percurso de absorção, distribuição, metabolização e eliminação. Este curso pode sofrer alterações caso as proteínas transportadoras e metabolizadoras necessárias não atuem corretamente. Para um melhor conhecimento da influência das alterações provocadas por variações nos genes que codificam proteínas transportadoras de efluxo (MDR1, MRP1), proteínas de influxo (OCTN2) e proteínas metabolizadoras (UCK2), o objetivo deste trabalho consistiu na avaliação de polimorfismos nos genes MDR1, MRP1, OCTN2 e UCK2 e da sua relação com a predisposição para o desenvolvimento de neoplasias hematológicas. Para isto, foram utilizadas amostras de 307 doentes com neoplasias hematológicas, 83 de Síndrome Mielodisplásica (SMD), 63 Leucemia Mieloide Aguda (LMA), 16 de Síndrome Mielodisplásica/Neoplasias Mieloproliferativas (SMD/NMP), 77 de Mieloma Múltiplo (MM) e 68 de Gamapatia Monoclonal de Significado Indeterminado (MGUS) e 164 de controlos não neoplásicos e/ou indivíduos saudáveis. As amostras de ADN foram extraídas do sangue periférico com protocolo adequado. De forma a determinar os genótipos correspondentes a cada amostra, realizaram-se técnicas de RFLP-PCR e ARMS-PCR. Posteriormente, calcularam-se estatisticamente as frequências alélicas e genotípicas relativas às variantes polimórficas dos genes MDR1, MRP1, OCTN2 e UCK2 e verificou-se se estavam em Equilíbrio de Hardy-Weinberg. De seguida, avaliou-se a força de associação entre as formas polimórficas e o risco de desenvolvimento de neoplasias hematológicas, através do cálculo do risco relativo por análise de regressão logística. Avaliaram-se ainda os perfis genéticos e a possível relação com o desenvolvimento e progressão da neoplasia com recurso a regressão logística e análise de Kaplan-Meier. De um modo geral as frequências alélicas e genotípicas não se revelaram alteradas comparativamente ao esperado. A análise do odds ratio associado ao polimorfismo rs1045642 do gene MDR1 revelou que o genótipo CT pode constituir um fator de risco aumentado de 1,84x para o desenvolvimento de Gamapatias Monoclonais e 2,27x para o desenvolvimento de Mieloma Múltiplo. Por outro lado, a presença de genótipos portadores do alelo T têm um efeito protetor no desenvolvimento de MM (OR=0,41). O cálculo do risco associado ao polimorfismo rs4148330 do gene MRP1 revela que o genótipo AG é um fator protetor (OR=0,50) para o desenvolvimento de LMA, assim como o alelo G (OR=0,50). Além disso, verificámos que existe uma associação de risco de desenvolver neoplasia com o polimorfismo rs2185268 do gene UCK2. De facto, a presença dos genótipos CC e AC representam um fator de risco 4,59x aumentado para o desenvolvimento de SMD/NMP. O polimorfismo rs274561 do gene OCTN2 não apresenta relação com o risco relativo de desenvolvimento neoplásico. Da avaliação da influência dos polimorfismos em estudo na sobrevivência global dos doentes, podemos assumir que a presença do genótipo GG relativo ao polimorfismo rs2185268 do gene UCK2 representa uma diminuição da sobrevivência em 11 meses. Os resultados obtidos a partir do nosso estudo permitem-nos concluir que os polimorfismos podem ser fatores relevantes na predisposição para o desenvolvimento de neoplasias hematológicas e na progressão destas doenças.
Resumo:
Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Resumo:
Soft tissue sarcomas (STS) comprise a heterogenenous group of greater than 50 malignancies of putative mesenchymal cell origin and as such they may arise in diverse tissue types in various anatomical locations throughout the whole body. Collectively they account for approximately 1% of all human malignancies yet have a spectrum of aggressive behaviours amongst their subtypes. They thus pose a particular challenge to manage and remain an under investigated group of cancers with no generally applicable new therapies in the past 40 years and an overall 5-year survival rate that remains stagnant at around 50%. From September 2000 to July 2006 I undertook a full time post-doctoral level research fellowship at the MD Anderson Cancer Center, Houston, Texas, USA in the department of Surgical Oncology to investigate the biology of soft tissue sarcoma and test novel anti- sarcoma adenovirus-based therapy in the preclinical nude rat model of isolated limb perfusion against human sarcoma xenografts. This work, in collaboration with colleagues as indicated herein, led to a number of publications in the scientific literature furthering our understanding of the malignant phenotype of sarcoma and reported preclinical studies with wild-type p53, in a replication deficient adenovirus vector, and oncolytic adenoviruses administered by isolated limb perfusion. Additional collaborative and pioneering preclinical studies reported the molecular imaging of sarcoma response to systemically delivered therapeutic phage RGD-4c AAVP. Doxorubicin chemotherapy is the single most active broadly applicable anti-sarcoma chemotherapeutic yet only has an approximate 30% overall response rate with additional breakthrough tumour progression and recurrence after initial chemo-responsiveness further problematic features in STS management. Doxorubicin is a substrate for the multi- drug resistance (mdr) gene product p-glycoprotein drug efflux pump and exerts its main mode of action by induction of DNA double-strand breaks during the S-phase of the cell cycle. Two papers in my thesis characterise different aspects of chemoresistance in sarcoma. The first shows that wild-type p53 suppresses Protein Kinase Calpha (PKCα) phosphorylation (and activation) of p-glycoprotein by transcriptional repression of PKCα through a Sp-1 transcription factor binding site in its -244/-234 promoter region. The second paper demonstrates that Rad51 (a central mediator of homologous recombination repair of double strand breaks) has elevated levels in sarcoma and particularly in the S- G2 phase of the cell cycle. Suppression of Rad51 with small interfering RNA in sarcoma cell culture led to doxorubicin chemosensitisation. Reintroduction of wild-type p53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression via transcriptional repression of the Rad51 promoter through increased AP-2 binding. In light of poor response rates to chemotherapy, escape from local control portends a poor prognosis for patients with sarcoma. Two papers in my thesis characterise aspects of sarcoma angiogenesis, invasion and metastasis. Human sarcoma samples were found to have high levels of matrix metalloproteinase-9 (MMP-9) with expression levels that correlated with p53 mutational status. MMP-9 is known to degrade extracellular collagen, contribute to the control of the angiogenic switch necessary in primary tumour progression and facilitate invasion and metastasis. Reconstitution of wild-type p53 function led to decreased levels of MMP-9 protein and mRNA as well as zymography-assessed MMP-9 proteolytic activity and decreased tumour cell invasiveness. Reintroduction of wild-type p53 into human sarcoma xenografts in-vivo decreased tumour growth and MMP-9 protein expression. Wild-type p53 was found to suppress mmp-9 transcription via decreased binding of NF-κB to its -607/-595 mmp-9 promoter element. Studies on the role of the VEGF165 in sarcoma found that sarcoma cells stably transfected with VEGF165 formed more aggressive xenografted tumours with increased vascularity, growth rate, metastasis, and resistance to chemotherapy. Use of the anti-VEGFR2 antibody DC101 enhanced doxorubicin sensitivity at sub-conventional dosing, inhibited tumour growth, decreased development of metastases, and reduced tumour micro-vessel density while increasing the vessel maturation index. These effects were explained primarily through effects on endothelial cells (e.c.s), rather than the tumour cells per se, where DC101 induced e.c. sensitivity to doxorubicin and suppressed e.c. production of MMPs. The p53 tumour suppressor pathway is the most frequently mutated pathway in sarcoma. Recapitulation of wild-type p53 function in sarcoma exerts a number of anti-cancer outcomes such as growth arrest, resensitisation to chemotherapy, suppression of invasion, and attenuation of angiogenesis. Using a modified nude rat-human sarcoma xenograft model for isolated limb perfusion (ILP) delivery of wild-type p53 in a replication deficient adenovirus vector I showed that functionally competent wild-type p53 could be delivered to and detected in human leiomyosarcoma xenografts confirming preclinical feasibility - although not efficacious due to low transgene expression. Viral fibre modification to express the RGD tripeptide motif led to greater viral uptake by sarcoma cells in vitro (transductional targeting) and changing the transgene promoter to a response element active in cells with active telomerase expression restricted the transgene expression to the tumour intracellular environment (transcriptional targeting). Delivery of the fibre-modified, selectively replication proficient oncolytic adenovirus Ad.hTC.GFP/ E1a.RGD by ILP demonstrated a more robust, and tumour-restricted, transgene expression with evidence of anti-sarcoma effect confirmed microscopically. Collaborative studies using the fibre modified phage RGD-4C AAVP confirmed that systemic delivery specifically, efficiently, and repeatedly targets human sarcoma xenografts, binds to αv integrins in tumours, and demonstrates a durable, though heterogeneous, transgene expression of 1-4 weeks. Incorporation of the Herpes Simplex Virus thymidine kinase (HSVtk) transgene into RGD-4C AAVP permitted CT-PET spatial and temporal molecular imaging in vivo of transgene expression and allowed quantification of tumour metabolic activity both before and after interval administration of a systemic cytotoxic with predictable and measurable response to treatment before becoming apparent clinically. These papers further the medical and scientific community’s understanding of the biology of soft tissue sarcoma and report preclinical studies with novel and promising anti- sarcoma therapeutics.