820 resultados para Dynamic Manufacturing Networks
Resumo:
Purpose – The purpose of this paper is to investigate how research and development (R&D) collaboration takes place for complex new products in the automotive sector. The research aims to give guidelines to increase the effectiveness of such collaborations. Design/methodology/approach – The methodology used to investigate this issue was grounded theory. The empirical data were collected through a mixture of interviews and questionnaires. The resulting inducted conceptual models were subsequently validated in industrial workshops. Findings – The findings show that frontloading of the collaborative members was a major issue in managing successful R&D collaborations. Research limitations/implications – The limitation of this research is that it is only based in the German automotive industry. Practical implications – Practical implications have come out of this research. Models and guidelines are given to help make a success of collaborative projects and their potential impacts on time, cost and quality metrics. Originality/value – Frontloading is not often studied in a collaborative manner; it is normally studied within just one organisation. This study has novel value because it has involved a number of different members throughout the supplier network.
Resumo:
This paper examines the relationship between the comparative advantage of UK industries, and new inward investment into these industries. The paper demonstrates that the extent of foreign manufacturing investment in an industry, and the spatial agglomeration of that industry, are significant determinants of industry comparative advantage, thus providing evidence of agglomeration benefits to both domestic and foreign firms. The paper then shows that industry comparative advantage itself, toegther with a series of industry specific characteristics, are important determinants of new foreigh manufacturing investment, thus providing evidence of the dynamic benefits of foreign direct investment in the UK economy.
Resumo:
Recent developments in the new economic geography and the literature on regional innovation systems have emphasised the potentially important role of networking and the characteristics of firms' local operating environment in shaping their innovative activity. Modeling UK, German and Irish plants' investments in R&D, technology transfer and networking, and their effect on the extent and success of plants' innovation activities, casts some doubt on the importance of both of these relationships. In particular, our analysis provides no support for the contention that firms or plants in the UK, Ireland or Germany with more strongly developed external links (collaborative networks or technology transfer) develop greater innovation intensity. However, although inter-firm links also have no effect on the commercial success of plants' innovation activity, intra-group links are important in terms of achieving commercial success. We also find evidence that R&D, technology transfer and networking inputs are substitutes rather than complements in the innovation process, and that there are systematic sectoral and regional influences in the efficiency with which such inputs are translated into innovation outputs. © 2001 Elsevier Science B.V.
Resumo:
The use of digital communication systems is increasing very rapidly. This is due to lower system implementation cost compared to analogue transmission and at the same time, the ease with which several types of data sources (data, digitised speech and video, etc.) can be mixed. The emergence of packet broadcast techniques as an efficient type of multiplexing, especially with the use of contention random multiple access protocols, has led to a wide-spread application of these distributed access protocols in local area networks (LANs) and a further extension of them to radio and mobile radio communication applications. In this research, a proposal for a modified version of the distributed access contention protocol which uses the packet broadcast switching technique has been achieved. The carrier sense multiple access with collision avoidance (CSMA/CA) is found to be the most appropriate protocol which has the ability to satisfy equally the operational requirements for local area networks as well as for radio and mobile radio applications. The suggested version of the protocol is designed in a way in which all desirable features of its precedents is maintained. However, all the shortcomings are eliminated and additional features have been added to strengthen its ability to work with radio and mobile radio channels. Operational performance evaluation of the protocol has been carried out for the two types of non-persistent and slotted non-persistent, through mathematical and simulation modelling of the protocol. The results obtained from the two modelling procedures validate the accuracy of both methods, which compares favourably with its precedent protocol CSMA/CD (with collision detection). A further extension of the protocol operation has been suggested to operate with multichannel systems. Two multichannel systems based on the CSMA/CA protocol for medium access are therefore proposed. These are; the dynamic multichannel system, which is based on two types of channel selection, the random choice (RC) and the idle choice (IC), and the sequential multichannel system. The latter has been proposed in order to supress the effect of the hidden terminal, which always represents a major problem with the usage of the contention random multiple access protocols with radio and mobile radio channels. Verification of their operation performance evaluation has been carried out using mathematical modelling for the dynamic system. However, simulation modelling has been chosen for the sequential system. Both systems are found to improve system operation and fault tolerance when compared to single channel operation.
Resumo:
The global market has become increasingly dynamic, unpredictable and customer-driven. This has led to rising rates of new product introduction and turbulent demand patterns across product mixes. As a result, manufacturing enterprises were facing mounting challenges to be agile and responsive to cope with market changes, so as to achieve the competitiveness of producing and delivering products to the market timely and cost-effectively. This paper introduces a currency-based iterative agent bidding mechanism to effectively and cost-efficiently integrate the activities associated with production planning and control, so as to achieve an optimised process plan and schedule. The aim is to enhance the agility of manufacturing systems to accommodate dynamic changes in the market and production. The iterative bidding mechanism is executed based on currency-like metrics; each operation to be performed is assigned with a virtual currency value and agents bid for the operation if they make a virtual profit based on this value. These currency values are optimised iteratively and so does the bidding process based on new sets of values. This is aimed at obtaining better and better production plans, leading to near-optimality. A genetic algorithm is proposed to optimise the currency values at each iteration. In this paper, the implementation of the mechanism and the test case simulation results are also discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The role of the production system as a key determinant of competitive performance of business operations- has long been the subject of industrial organization research, even predating the .explicit conceptua1isation of manufacturing, strategy in the literature. Particular emergent production issues such as the globalisation of production, global supply chain management, management of integrated manufacturing and a growing e~busjness environment are expected to critically influence the overall competitive performance and therefore the strategic success of the organization. More than ever, there is a critical need to configure and improve production system and operations competence in a strategic way so as to contribute to the long-term competitiveness of the organization. In order to operate competitively and profitably, manufacturing companies, no matter how well managed, all need a long-term 'strategic direction' for the development of operations competence in order to consistently produce more market value with less cost towards a leadership position. As to the long-term competitiveness, it is more important to establish a dynamic 'strategic perspective' for continuous operational improvements in pursuit of this direction, as well as ongoing reviews of the direction in relation to the overall operating context. However, it also clear that the 'existing paradigm of manufacturing strategy development' is incapable of adequately responding to the increasing complexities and variations of contemporary business operations. This has been factually reflected as many manufacturing companies are finding that methodologies advocated in the existing paradigm for developing manufacturing strategy have very limited scale and scope for contextual contingency in empirical application. More importantly, there has also emerged a deficiency in the multidimensional and integrative profile from a theoretical perspective when operationalising the underlying concept of strategic manufacturing management established in the literature. The point of departure for this study was a recognition of such contextual and unitary limitations in the existing paradigm of manufacturing strategy development when applied to contemporary industrial organizations in general, and Chinese State Owned Enterprises (SOEs) in particular. As China gradually becomes integrated into the world economy, the relevance of Western management theory and its paradigm becomes a practical matter as much as a theoretical issue. Since China markedly differs from Western countries in terms of culture, society, and political and economic systems, it presents promising grounds to test and refine existing management theories and paradigms with greater contextual contingency and wider theoretical perspective. Under China's ongoing programmes of SOE reform, there has been an increased recognition that strategy development is the very essence of the management task for managers of manufacturing companies in the same way as it is for their counterparts in Western economies. However, the Western paradigm often displays a rather naive and unitary perspective of the nature of strategic management decision-making, one which largely overlooks context-embedded factors and social/political influences on the development of manufacturing strategy. This thesis studies the successful experiences of developing manufacturing strategy from five high-performing large-scale SOEs within China’s petrochemical industry. China’s petrochemical industry constitutes a basic heavy industrial sector, which has always been a strategic focus for reform and development by the Chinese government. Using a confirmation approach, the study has focused on exploring and conceptualising the empirical paradigm of manufacturing strategy development practiced by management. That is examining the ‘empirical specifics’ and surfacing the ‘managerial perceptions’ of content configuration, context of consideration, and process organization for developing a manufacturing strategy during the practice. The research investigation adopts a qualitative exploratory case study methodology with a semi-structural front-end research design. Data collection follows a longitudinal and multiple-case design and triangulates case evidence from sources including qualitative interviews, direct observation, and a search of documentations and archival records. Data analysis follows an investigative progression from a within-case preliminary interpretation of facts to a cross-case search for patterns through theoretical comparison and analytical generalization. The underlying conceptions in both the literature of manufacturing strategy and related studies in business strategy were used to develop theoretical framework and analytical templates applied during data collection and analysis. The thesis makes both empirical and theoretical contributions to our understanding of 'contemporary management paradigm of manufacturing strategy development'. First, it provides a valuable contextual contingency of the 'subject' using the business setting of China's SOEs in petrochemical industry. This has been unpacked into empirical configurations developed for its context of consideration, its content and process respectively. Of special note, a lean paradigm of business operations and production management discovered at case companies has significant implications as an emerging alternative for high-volume capital intensive state manufacturing in China. Second, it provides a multidimensional and integrative theoretical profile of the 'subject' based upon managerial perspectives conceptualised at case companies when operationalising manufacturing strategy. This has been unpacked into conceptual frameworks developed for its context of consideration, its content constructs, and its process patterns respectively. Notably, a synergies perspective towards the operating context, competitive priorities and competence development of business operations and production management has significant implications for implementing a lean manufacturing paradigm. As a whole, in so doing, the thesis established a theoretical platform for future refinement and development of context-specific methodologies for developing manufacturing strategy.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
The absence of a definitive approach to the design of manufacturing systems signifies the importance of a control mechanism to ensure the timely application of relevant design techniques. To provide effective control, design development needs to be continually assessed in relation to the required system performance, which can only be achieved analytically through computer simulation. The technique providing the only method of accurately replicating the highly complex and dynamic interrelationships inherent within manufacturing facilities and realistically predicting system behaviour. Owing to the unique capabilities of computer simulation, its application should support and encourage a thorough investigation of all alternative designs. Allowing attention to focus specifically on critical design areas and enabling continuous assessment of system evolution. To achieve this system analysis needs to efficient, in terms of data requirements and both speed and accuracy of evaluation. To provide an effective control mechanism a hierarchical or multi-level modelling procedure has therefore been developed, specifying the appropriate degree of evaluation support necessary at each phase of design. An underlying assumption of the proposal being that evaluation is quick, easy and allows models to expand in line with design developments. However, current approaches to computer simulation are totally inappropriate to support the hierarchical evaluation. Implementation of computer simulation through traditional approaches is typically characterized by a requirement for very specialist expertise, a lengthy model development phase, and a correspondingly high expenditure. Resulting in very little and rather inappropriate use of the technique. Simulation, when used, is generally only applied to check or verify a final design proposal. Rarely is the full potential of computer simulation utilized to aid, support or complement the manufacturing system design procedure. To implement the proposed modelling procedure therefore the concept of a generic simulator was adopted, as such systems require no specialist expertise, instead facilitating quick and easy model creation, execution and modification, through simple data inputs. Previously generic simulators have tended to be too restricted, lacking the necessary flexibility to be generally applicable to manufacturing systems. Development of the ATOMS manufacturing simulator, however, has proven that such systems can be relevant to a wide range of applications, besides verifying the benefits of multi-level modelling.
Resumo:
Product design decisions can have a significant impact on the financial and operation performance of manufacturing companies. Therefore good analysis of the financial impact of design decisions is required if the profitability of the business is to be maximised. The product design process can be viewed as a chain of decisions which links decisions about the concept to decisions about the detail. The idea of decision chains can be extended to include the design and operation of the 'downstream' business processes which manufacture and support the product. These chains of decisions are not independent but are interrelated in a complex manner. To deal with the interdependencies requires a modelling approach which represents all the chains of decisions, to a level of detail not normally considered in the analysis of product design. The operational, control and financial elements of a manufacturing business constitute a dynamic system. These elements interact with each other and with external elements (i.e. customers and suppliers). Analysing the chain of decisions for such an environment requires the application of simulation techniques, not just to any one area of interest, but to the whole business i.e. an enterprise simulation. To investigate the capability and viability of enterprise simulation an experimental 'Whole Business Simulation' system has been developed. This system combines specialist simulation elements and standard operational applications software packages, to create a model that incorporates all the key elements of a manufacturing business, including its customers and suppliers. By means of a series of experiments, the performance of this system was compared with a range of existing analysis tools (i.e. DFX, capacity calculation, shop floor simulator, and business planner driven by a shop floor simulator).
Resumo:
Manufacturing firms are driven by competitive pressures to continually improve the effectiveness and efficiency of their organisations. For this reason, manufacturing engineers often implement changes to existing processes, or design new production facilities, with the expectation of making further gains in manufacturing system performance. This thesis relates to how the likely outcome of this type of decision should be predicted prior to its implementation. The thesis argues that since manufacturing systems must also interact with many other parts of an organisation, the expected performance improvements can often be significantly hampered by constraints that arise elsewhere in the business. As a result, decision-makers should attempt to predict just how well a proposed design will perform when these other factors, or 'support departments', are taken into consideration. However, the thesis also demonstrates that, in practice, where quantitative analysis is used to evaluate design decisions, the analysis model invariably ignores the potential impact of support functions on a system's overall performance. A more comprehensive modelling approach is therefore required. A study of how various business functions interact establishes that to properly represent the kind of delays that give rise to support department constraints, a model should actually portray the dynamic and stochastic behaviour of entities in both the manufacturing and non-manufacturing aspects of a business. This implies that computer simulation be used to model design decisions but current simulation software does not provide a sufficient range of functionality to enable the behaviour of all of these entities to be represented in this way. The main objective of the research has therefore been the development of a new simulator that will overcome limitations of existing software and so enable decision-makers to conduct a more holistic evaluation of design decisions. It is argued that the application of object-oriented techniques offers a potentially better way of fulfilling both the functional and ease-of-use issues relating to development of the new simulator. An object-oriented analysis and design of the system, called WBS/Office, are therefore presented that extends to modelling a firm's administrative and other support activities in the context of the manufacturing system design process. A particularly novel feature of the design is the ability for decision-makers to model how a firm's specific information and document processing requirements might hamper shop-floor performance. The simulator is primarily intended for modelling make-to-order batch manufacturing systems and the thesis presents example models created using a working version of WBS/Office that demonstrate the feasibility of using the system to analyse manufacturing system designs in this way.
Resumo:
In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.
Resumo:
In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.
Resumo:
In global environment, a company has to make many decisions that impact upon its position in global supply chain networks such as outsourcing, offshoring, joint venture, vertical/horizontal integration, etc. All these decisions impact on the company’s strategic position, and hence on competitive space and performance. Therefore, it is important for a company to carefully manage strategic positioning by making careful decisions about the adoption of alternative manufacturing and supply chain activities. Unfortunately, there is no complete process studied in strategic positioning of manufacturing operations within global supply chain. Therefore, the work presented in this paper has investigated leading research and industrial practices to create a formal and rational decision process. An analysis of previous literature, industrial practices, and the resulting decision process are all presented in this paper.