699 resultados para Difusividade hidráulica
Resumo:
The mobility of water in the soil is a difficult process to be quantified. During precipitation, there is a portion of the water that infiltrates, which is very important for recovering the groundwater balance. This work studies the mobility of water in sandy soils with different textures and residual soils through experiments mounted in lysimeters. The lysimeters were mounted on acrylic cylinder with 11.3 cm diameter and 25.0 cm in length. The sand was deposited using the process sand rain. In the tests it was maintained a hydraulic head of two centimeters above the surface with the aid of a Mariotte flask. The portions of water were controlled in the experiments using relations between weight and volume measurements over time. The data were obtained by monitoring the input and output volumes of water through calibrated reservoir and system weight by an electronic balance. The infiltration front was monitored with the aid of a digital camera. The results indicate that the smaller the particle size of the sand, the lower the speed of the saturation front, the higher the retained volume, the smaller the basic rate of infiltration and the lowest speed of percolation. Moreover, the rate of water loss in the evaporation process indicated no significant difference with variation of the particle size of the samples
Resumo:
The contamination of underground waters is a subject of great importance, since a lot of people use this kind of source for public supply. This paperwork manages with how gas stations can contaminate these waters and what are some remediation techniques, used nowadays to solve this problem. The contamination caused by the gas stations can have its origin in the underground storage tanks when they suffer corrosion and show leaking problems. It’s a topic of great relevance, because the hydrocarbons derivated from petroleum present in the fuels can stay for a long time in the environment. Besides that, an analyses of the risk of contamination by gas stations in the city of Rio Claro was made based on three parameters: density of the gas stations, depth of the underground water and hydraulic conductivity. To achieve such goal, maps were elaborated considering those parameters individually and considering the three of them together. Analyzing those maps, it was concluded see that the spots that represent the biggest risks of contamination in Rio Claro are located southeast and center-west.
Resumo:
The increasing demand for productivity and quality in companies has converged to a common point: reducing costs. In this context the present work aims at the development of a mechanical press which is designed for pressing polar hydrogenerators coils with salient pole in field facilitating the assembly of the poles in the plant, as well as reforms especially in hydrogenerators, reducing significantly the transport costs. With security in mind as well as reduced costs, a study was made of the materials to be used as it was applied a methodology for calculating the correct choice of safety factor to be used in the device. Through mechanical calculations were dimensioned critical items of the device as the diameter of the rods as well as the minimum thickness of the base of the device must have so that it does not break threaded shear in the region by applying the total load of traction on the risers implementation of the pressing. All compression loading device will be through the application of torque on the nuts of bolts in this way was defined by calculations the required torque for each nut so that you can reach the pressure specified in the design specifies. The modeling of the device was made using the INVENTOR™ program in conjunction with the program ANSYS ™. These programs have created designs in three dimensions, assembly and simulation of stress analysis in components of the device
Resumo:
The Urucuia Aquifer System represents a strategic water source in western Bahia. Its baseflow is responsible for the flow rate of the main tributaries of São Francisco river left bank in the dry season, including the Rio Grande, its main tributary in Bahia state. This river has a hydrological regime heavily affected by groundwater and is located in a region with conflicts about water resources. The aquifers geology is constituted by neocretacious sandstones of Urucuia Group subdivided in Posse Formation and Serra das Araras Formation. The embasement is formed by neoproterozoic rocks of Bambuí Group. This work focuses on an important tool application, the mathematical model, whose function is represent approximately and suitably the reality so that can assist in different scenarios simulations and make predictions. Many studies developed in this basin provided the conceptual model basis including a full free aquifer, lithological and hydraulical homogeneity in entire basin, null flux at plateau borders and aquifer base. The finite element method is the numerical method used and FEFLOW the computational algorithm. The simulated area was discretized in a single layer with 27.357,6 km² (314.432 elements and 320.452 nodes) totaling a 4.249,89 km³ volume. Were utilized 21 observation wells from CERB to calibrate the model. The terrain topography was obtained by SRTM data and the impermeable base was generated by interpolation of descriptive profiles from wells and electric vertical drilling from previous studies. Works in this area obtained mean recharge rates varying approximately from 20% to 25% of average precipitation, thus the values of model recharge zones varying in this range. Were distributed 4 hydraulic conductivity zones: (K1) west zone with K=6x10-5 m/s; (K2) center-east zone with K=3x10-4 m/s; (K3) far east zone with K=5x10-4 m/s; e (K4) east-north zone with K=1x10-5 m/s. Thereby was incorporated to the final conceptual model...
Resumo:
On the field of the projects of hydraulic systems exists a lot of worries when we talk about the calculate of hydraulic pumps. In this case some facts must be considerate: length of tubes, fluid characteristics, height gauge, temperature, pressure, characteristics of tubes, flow required and others. For that mathematic calculates must be developed with the objective to optimize hydraulic pumps and agree to find an ideal machine (that don't requires more energy than necessary or less energy than it requires; that is the more critical case, cause exists the risk that the fluid pumped do not agree to become in your destiny). The wrong calculate of this machine can super-size its, bringing an excessive energy consumption. Actually it's an important subject because we are in the age of lack of energy what turn it more expensive. So the correct sizing of a hydraulic pump is connected with the fact that you have to uses the enough energy resources avoiding waste. The calculate of ideal pump in the pumping system is studied during years and a lot of specialists in this subject develop equations and theories to calculate its. Some researches study about this subject and all of them become to the same conclusion: to find the ideal pump we have to know the characteristics of fluid (cinematic viscosity), the required flow , overall yield (overall of motor x overall of pump) the high gauge or discharge pressure and the loss of repression. The pressure drop can be calculated with different theories: using Hazen-Williams, Darcy e Weisbach or Chézy (1775 - that starts the researches to calculate the pressure drop). Although the most used theory and what is most near to reality is the Darcy's equation. So, in this job the Darcy's equation were choice to calculate the drop pressure that consider what kind of flow we are studying: laminar or turbulent. The determination of the best pump to be used in the ... ( complete abstract click eletronic access below)
Resumo:
Most of the hydraulic turbines that are running in the world are the Francis type, because they are able to fit a wide range of head and flow. We also can declare that most of the installed hydraulic energy up to this date is generated by this type of turbine. On the other hand, if we pay attention to mechanical details of a Francis turbine we will see that among the three most used types it is the one that presents the more complex design. And, the simplest one is the Pelton type, whereas the Kaplan is the one less utilized. This work aims to develop the hydrodynamic calculation of a Francis turbine as well as to obtain its assembly drawing and 3D modeling drawing. In this way all details must be shown therefore needing a complete knowledge about this issue. Both 2D and 3D drawings help much if one wants the machine to be running in its power house. It is well noted that most of the entities that design and manufacture the Francis turbines are not brazilian. In this way the more we study how to design this kind of machine the more is our contribution to our country in order to conquer technology and manufacture Francis turbines
Resumo:
The treatment of domestic and industrial effluents through Wastewater Treatment Plants (WTPs) generates a residue termed sewage sludge, rich in organic matter, high-volume, occasionally containing pathogens and heavy metals. The sludge generation can minimize the benefits brought by the treatment of sewage, because this residue does not always receive appropriate treatment before final disposal. The disposal is another problem related to sludge. Landfills generally does not have physical space and alternatives such as the use in agriculture requires an intense treatment that could be in many cases operational or economic unfeasible. The objective of this work is the theoretical research about the processes of stabilization of the sludge by anaerobic digestion and the methanogenic activity during the process. Through analysis of each step and contemplating each relevant factor in anaerobic digestion process in order to optimize them, we proposed a theoretical model of reactors capable of stabilize the sludge, reduce its volume and eliminate pathogens. The obtained configuration consists of two anaerobic reactors connected in series. The first one operates in the range mesophilic temperature (35 ° C) and has higher hydraulic retention time (25 days) working primarily in the stabilization of organic matter present in the sludge and producing biogas, whereas the second one operates in the thermophilic range (55 ° C) in order to eliminate pathogens, and to reduce the volume. The hydraulic retention time in the second reactor is lower (10 days). Both mesophilic and thermophilic processes were efficient in what was proposed, promoting the stabilization of organic matter present in the sludge and significant reduction of pathogens. As a final step with the sludge previously digested, it is indicated a final dehydration... (Complete abstract click electronic access below)
Resumo:
The term model refers to any representation of a real system. The use of models in Hydrogeology can be valuable predictive tools for management of groundwater resources. The numeric models of groundwater flow, object of this study, consist on a set of differential equations that describe the water flow in the porous medium. In this context, numeric simulations were made for a sub-basin located at Cara Preta farm – Santa Rita do Passa Quatro – SP. The aquifer at the local is composed by rocks of Pirambóia Formation, which is part of Guarani Aquifer System. It was developed a conceptual model from previous studies in the area, and from that, simulations were made through the software Visual Modflow®. The conceptual model established previously was considered consistent through the results of simulation.
Resumo:
The purpose of this work is to study the theme “infiltration trenches” in some of its main aspects, such as sizing methods and parameters related to this, in order to subsidize the installation of these structures in the urban area of Rio Claro/SP. For purposes of sizing, the “rain-envelope method” was used for its simplicity and direct application from the local characterization data and the IDF (intensity-duration-frequency) curve data. The method bases on the determination of the tributary volume of input and output device. The curve of values accumulated over time of the volumes tributaries to the device, which is built on the flow rates obtained from the local IDF curve, is compared with the value curve of his effluent volumes determined from the flow characteristics obtained from the infiltration soil. The maximum difference between the curves is the volume sizing. Five locations were chosen in the urban area of Rio Claro for implementation of these devices, considering the soil type, hydraulic conductivity of each area and lot size according to the Master Plan of Rio Claro. This work also presented an estimated reduction of the runoff in urban lots by using infiltration trenches.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The aim of this study was to compare the hydraulic conductance in human dentin disks, where 1, 2 or 3 layers of adhesive Single Bond 2(SB2) and Single Bond Universal(SBU) were applied. 84 1 mm. thick(+/- 0.1 mm.) dentin disks were fabricated. Samples were divided into 7 groups (n = 12) Control (without adhesive), A1: one layer of SB2, A2: two layers SB2, A3: three layers SB2, B1: one layer SBU, B2: two layers of SBU, B3: three layers of SBU. The results as averages for the hydraulic conductance of each separate group were: Control (0.0363), A1 (0.0206), A2 (0.0070), A3 (0.0061), B1 (0.0161), B2 (0.0062), B3(0.0056) expressed µl/min.cm2. There is statistically significant difference CH, between the control group and those samples that one coat was applied (p = 0.000) and also between the application of one and two layers (p = 0.000). No difference between the two adhesives (p = 0.434). Summary Key words: Dentin, conductance, difussion adhesive layers.