982 resultados para DNA-Binding Proteins -- metabolism
Resumo:
Background: Numerous hypermethylated genes have been reported in breast cancer, and the silencing of these genes plays an important role in carcinogenesis, tumor progression and diagnosis. These hypermethylated promoters are very rarely found in normal breast. It has been suggested that aberrant hypermethylation may be useful as a biomarker, with implications for breast cancer etiology, diagnosis, and management. The relationship between primary neoplasm and metastasis remains largely unknown. There has been no comprehensive comparative study on the clinical usefulness of tumor-associated methylated DNA biomarkers in primary breast carcinoma and metastatic breast carcinoma. The objective of the present study was to investigate the association between clinical extension of breast cancer and methylation status of Estrogen Receptor1 (ESR1) and Stratifin (14-3-3-σ) gene promoters in disease-free and metastatic breast cancer patients. Methods: We studied two cohorts of patients: 77 patients treated for breast cancer with no signs of disease, and 34 patients with metastatic breast cancer. DNA was obtained from serum samples, and promoter methylation status was determined by using DNA bisulfite modification and quantitative methylation-specific PCR. Results: Serum levels of methylated gene promoter 14-3-3-σ significantly differed between Control and Metastatic Breast Cancer groups (P < 0.001), and between Disease-Free and Metastatic Breast Cancer groups (P < 0.001). The ratio of the 14-3-3-σ level before the first chemotherapy cycle to the level just before administration of the second chemotherapy cycle was defined as the Biomarker Response Ratio [BRR]. We calculated BRR values for the "continuous decline" and "rise-and-fall" groups. Subsequent ROC analysis showed a sensitivity of 75% (95% CI: 47.6 - 86.7) and a specificity of 66.7% (95% CI: 41.0 - 86.7) to discriminate between the groups for a cut-off level of BRR = 2.39. The area under the ROC curve (Z = 0.804 ± 0.074) indicates that this test is a good approach to post-treatment prognosis. Conclusions: The relationship of 14-3-3-σ with breast cancer metastasis and progression found in this study suggests a possible application of 14-3-3-σ as a biomarker to screen for metastasis and to follow up patients treated for metastatic breast cancer, monitoring their disease status and treatment response.
Resumo:
INTRODUCTION Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region. METHODS To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry. RESULTS Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region. CONCLUSIONS Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.
Resumo:
BACKGROUND The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines METHODS We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). RESULTS The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. CONCLUSION These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied.
Resumo:
The transcription factor Aiolos (also known as IKZF3), a member of the Ikaros family of zinc-finger proteins, plays an important role in the control of B lymphocyte differentiation and proliferation. Previously, multiple isoforms of Ikaros family members arising from differential splicing have been described and we now report a number of novel isoforms of Aiolos. It has been demonstrated that full-length Ikaros family isoforms localize to heterochromatin and that they can associate with complexes containing histone deacetylase (HDAC). In this study, for the first time we directly investigate the cellular localization of various Aiolos isoforms, their ability to heterodimerize with Ikaros and associate with HDAC-containing complexes, and the effects on histone modification and binding to putative targets. Our work demonstrates that the cellular activities of Aiolos isoforms are dependent on combinations of various functional domains arising from the differential splicing of mRNA transcripts. These data support the general principle that the function of an individual protein is modulated through alternative splicing, and highlight a number of potential implications for Aiolos in normal and aberrant lymphocyte function.
Resumo:
BACKGROUND Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. METHODS Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. RESULTS We found no evidence of KRAS oncogenic mutations in all analyzed tumors. CONCLUSIONS This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases.
Resumo:
BACKGROUND Taxanes are among the most active drugs for the treatment of metastatic breast cancer, and, as a consequence, they have also been studied in the adjuvant setting. METHODS After breast cancer surgery, women with lymph node-positive disease were randomly assigned to treatment with fluorouracil, epirubicin, and cyclophosphamide (FEC) or with FEC followed by weekly paclitaxel (FEC-P). The primary endpoint of study-5-year disease-free survival (DFS)-was assessed by Kaplan-Meier analysis. Secondary endpoints included overall survival and analysis of the prognostic and predictive value of clinical and molecular (hormone receptors by immunohistochemistry and HER2 by fluorescence in situ hybridization) markers. Associations and interactions were assessed with a multivariable Cox proportional hazards model for DFS for the following covariates: age, menopausal status, tumor size, lymph node status, type of chemotherapy, tumor size, positive lymph nodes, HER2 status, and hormone receptor status. All statistical tests were two-sided. RESULTS Among the 1246 eligible patients, estimated rates of DFS at 5 years were 78.5% in the FEC-P arm and 72.1% in the FEC arm (difference = 6.4%, 95% confidence interval [CI] = 1.6% to 11.2%; P = .006). FEC-P treatment was associated with a 23% reduction in the risk of relapse compared with FEC treatment (146 relapses in the 614 patients in the FEC-P arm vs 193 relapses in the 632 patients in the FEC arm, hazard ratio [HR] = 0.77, 95% CI = 0.62 to 0.95; P = .022) and a 22% reduction in the risk of death (73 and 95 deaths, respectively, HR = 0.78, 95% CI = 0.57 to 1.06; P = .110). Among the 928 patients for whom tumor samples were centrally analyzed, type of chemotherapy (FEC vs FEC-P) (P = .017), number of involved axillary lymph nodes (P < .001), tumor size (P = .020), hormone receptor status (P = .004), and HER2 status (P = .006) were all associated with DFS. We found no statistically significant interaction between HER2 status and paclitaxel treatment or between hormone receptor status and paclitaxel treatment. CONCLUSIONS Among patients with operable breast cancer, FEC-P treatment statistically significantly reduced the risk of relapse compared with FEC as adjuvant therapy.
Resumo:
INTRODUCTION Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement therapy (HRT) use. METHODS Within the European EPIC cohort, Cox proportional hazards models were used to describe the relationship of BMI, waist and hip circumferences with risk of estrogen-receptor (ER) negative and progesterone-receptor (PR) negative (n = 1,021) and ER+PR+ (n = 3,586) breast tumors within five-year age bands. Among postmenopausal women, the joint effects of BMI and HRT use were analyzed. RESULTS For risk of ER-PR- tumors, there was no association of BMI across the age bands. However, when analyses were restricted to postmenopausal HRT never users, a positive risk association with BMI (third versus first tertile HR = 1.47 (1.01 to 2.15)) was observed. BMI was inversely associated with ER+PR+ tumors among women aged ≤49 years (per 5 kg/m2 increase, HR = 0.79 (95%CI 0.68 to 0.91)), and positively associated with risk among women ≥65 years (HR = 1.25 (1.16 to 1.34)). Adjusting for BMI, waist and hip circumferences showed no further associations with risks of breast cancer subtypes. Current use of HRT was significantly associated with an increased risk of receptor-negative (HRT current use compared to HRT never use HR: 1.30 (1.05 to 1.62)) and positive tumors (HR: 1.74 (1.56 to 1.95)), although this risk increase was weaker for ER-PR- disease (Phet = 0.035). The association of HRT was significantly stronger in the leaner women (BMI ≤22.5 kg/m2) than for more overweight women (BMI ≥25.9 kg/m2) for, both, ER-PR- (HR: 1.74 (1.15 to 2.63)) and ER+PR+ (HR: 2.33 (1.84 to 2.92)) breast cancer and was not restricted to any particular HRT regime. CONCLUSIONS An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women who never used HRT. Furthermore, postmenopausal HRT users were at an increased risk of ER-PR- as well as ER+PR+ tumors, especially among leaner women. For hormone-receptor positive tumors, but not for hormone-receptor negative tumors, our study confirms an inverse association of risk with BMI among young women of premenopausal age. Our data provide evidence for a possible role of sex hormones in the etiology of hormone-receptor negative tumors.
Resumo:
Studies in animal models and humans suggest anti-inflammatory roles on the N acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages.
Resumo:
In human heart failure (HF) peroxisome proliferator-activated receptor alpha (PPAR alpha) is downregulated and consequently, the expression of genes involved in fatty acid oxidation repressed. The L162V (rs1800206) is a functional polymorphism of the human PPAR alpha gene (PPARA). In the present study we have investigated whether this polymorphism is associated with the development of stage C of HF.
Resumo:
Two candidate genes for controlling thymocyte differentiation, T-cell factor-1 (Tcf-1) and lymphoid enhancer-binding factor (Lef-1), encode closely related DNA-binding HMG-box proteins. Their expression pattern is complex and largely overlapping during embryogenesis, yet restricted to lymphocytes postnatally. Here we generate two independent germline mutations in Tcf-1 and find that thymocyte development in (otherwise normal) mutant mice is blocked at the transition from the CD8+, immature single-positive to the CD4+/CD8+ double-positive stage. In contrast to wild-type mice, most of the immature single-positive cells in the mutants are not in the cell cycle and the number of immunocompetent T cells in peripheral lymphoid organs is reduced. We conclude that Tcf-1 controls an essential step in thymocyte differentiation.
Resumo:
T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.
Resumo:
The inv(16) and related t(16;16) are found in 10% of all cases with de novo acute myeloid leukemia. In these rearrangements the core binding factor beta (CBFB) gene on 16q22 is fused to the smooth muscle myosin heavy chain gene (MYH11) on 16p13. To gain insight into the mechanisms causing the inv(16) we have analysed 24 genomic CBFB-MYH11 breakpoints. All breakpoints in CBFB are located in a 15-Kb intron. More than 50% of the sequenced 6.2 Kb of this intron consists of human repetitive elements. Twenty-one of the 24 breakpoints in MYH11 are located in a 370-bp intron. The remaining three breakpoints in MYH11 are located more upstream. The localization of three breakpoints adjacent to a V(D)J recombinase signal sequence in MYH11 suggests a V(D)J recombinase-mediated rearrangement in these cases. V(D)J recombinase-associated characteristics (small nucleotide deletions and insertions of random nucleotides) were detected in six other cases. CBFB and MYH11 duplications were detected in four of six cases tested.
Resumo:
Meniere's disease is an episodic vestibular syndrome associated with sensorineural hearing loss (SNHL) and tinnitus. Patients with MD have an elevated prevalence of several autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and psoriasis), which suggests a shared autoimmune background. Functional variants of several genes involved in the NF-κB pathway, such as REL, TNFAIP3, NFKB1 and TNIP1, have been associated with two or more immune-mediated diseases and allelic variations in the TLR10 gene may influence bilateral affectation and clinical course in MD. We have genotyped 716 cases of MD and 1628 controls by using the ImmunoChip, a high-density genotyping array containing 186 autoimmune loci, to explore the association of immune system related-loci with sporadic MD. Although no single nucleotide polymorphism (SNP) reached a genome-wide significant association (p<10(-8)), we selected allelic variants in the NF-kB pathway for further analyses to evaluate the impact of these SNPs in the clinical outcome of MD in our cohort. None of the selected SNPs increased susceptibility for MD in patients with uni or bilateral SNHL. However, two potential regulatory variants in the NFKB1 gene (rs3774937 and rs4648011) were associated with a faster hearing loss progression in patients with unilateral SNHL. So, individuals with unilateral MD carrying the C allele in rs3774937 or G allele in rs4648011 had a shorter mean time to reach hearing stage 3 (>40 dB HL) (log-rank test, corrected p values were p = 0.009 for rs3774937 and p = 0.003 for rs4648011, respectively). No variants influenced hearing in bilateral MD. Our data support that the allelic variants rs3774937 and rs4648011 can modify hearing outcome in patients with MD and unilateral SNHL.
Resumo:
Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels of induced CYP1A1 mRNAs. The mechanism involves the repression of the CYP1A1 gene promoter activity in a negative-feedback autoregulatory loop. Indeed, increasing the CYP1A1 activity by transfecting CYP1A1 expression vectors into hepatoma cells elicited an oxidative stress and led to the repression of a reporter gene driven by the CYP1A1 gene promoter. This negative autoregulation is abolished by ellipticine (an inhibitor of CYP1A1) and by catalase (which catalyzes H(2)O(2) catabolism), thus implying that H(2)O(2) is an intermediate. Down-regulation is also abolished by the mutation of the proximal nuclear factor I (NFI) site in the promoter. The transactivating domain of NFI/CTF was found to act in synergy with the arylhydrocarbon receptor pathway during the induction of CYP1A1 by 2,3,7,8-tetrachloro-p-dibenzodioxin. Using an NFI/CTF-Gal4 fusion, we show that NFI/CTF transactivating function is decreased by a high activity of CYP1A1. This regulation is also abolished by catalase or ellipticine. Consistently, the transactivating function of NFI/CTF is repressed in cells treated with H(2)O(2), a novel finding indicating that the transactivating domain of a transcription factor can be targeted by oxidative stress. In conclusion, an autoregulatory loop leads to the fine tuning of the CYP1A1 gene expression through the down-regulation of NFI activity by CYP1A1-based H(2)O(2) production. This mechanism allows a limitation of the potentially toxic CYP1A1 activity within the cell.
Resumo:
Idiopathic hypogonadotropic hypogonadism (IHH) is an important human disease model. Investigations of the genetics of IHH have facilitated insights into critical pathways regulating sexual maturation and fertility. IHH has been traditionally considered a monogenic disorder. This model holds that a single gene defect is responsible for the disease in each patient. In the case of IHH, 30% of cases are explained by mutations in one of eleven genes. In recent years, several lines of evidence have challenged the monogenic paradigm in IHH. First, disease-associated mutations display striking incomplete penetrance and variable expressivity within and across IHH families. Second, each locus is responsible for only a small percentage of cases. Third, more than one disease-associated mutation seems to be segregating in some families with IHH, and their combined or separate presence in individuals accounts for the variability in disease severity. Finally, IHH is not strictly a congenital and life-long disorder; occasionally it manifests itself during adulthood (adult-onset IHH); in other cases, the disease is not permanent, as evidenced by normal activity of the hypothalamic-pituitary-gonadal axis after discontinuation of treatment in adulthood (IHH reversal). Together, these observations suggest that IHH is not strictly a monogenic mendelian disease, as previously thought. Rather, it is emerging as a digenic, and potentially oligogenic disease, in which hormonal and/or environmental factors may critically influence genetic predisposition and clinical course. Future investigations of IHH should characterize the extent of the involvement of multiple genes in disease pathogenesis, and elucidate the contributions of epigenetic factors.