950 resultados para Cytosolic phospholipase A2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian target of rapamycin (MTOR) assembles into two distinct complexes: mTOR complex 1 (mTORC1) is predominantly cytoplasmic and highly responsive to rapamycin, whereas mTOR complex 2 (mTORC2) is both cytoplasmic and nuclear, and relatively resistant to rapamycin. mTORC1 and mTORC2 phosphorylatively regulate their respective downstream effectors p70S6K/4EBP1, and Akt. The resulting activated mTOR pathways stimulate protein synthesis, cellular proliferation, and cell survival. Moreover, phospholipase D (PLD) and its product, phosphatidic acid (PA) have been implicated as one of the upstream activators of mTOR signaling. In this study, we investigated the activation status as well as the subcellular distribution of mTOR, and its upstream regulators and downstream effectors in endometrial carcinomas (ECa) and non-neoplastic endometrial control tissue. Our data show that the mTORC2 activity is selectively elevated in endometrial cancers as evidenced by a predominant nuclear localization of the activated form of mTOR (p-mTOR at Ser2448) in malignant epithelium, accompanied by overexpression of nuclear p-Akt (Ser473), as well as overexpression of vascular endothelial growth factor (VEGF)-A isoform, the latter a resultant of target gene activation by mTORC2 signaling via hypoxia-inducible factor (HIF)-2alpha. In addition, expression of PLD1, one of the two major isoforms of PLD in human, is increased in tumor epithelium. In summary, we demonstrate that the PLD1/PA-mTORC2 signal pathway is overactivated in endometrial carcinomas. This suggests that the rapamycin-insensitive mTORC2 pathway plays a major role in endometrial tumorigenesis and that therapies designed to target the phospholipase D pathway and components of the mTORC2 pathway should be efficacious against ECa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated if CLSI M27-A2 Candida species breakpoints for fluconazole MIC are valid when read at 24 h. Analysis of a data set showed good correlation between 48- and 24-h MICs, as well as similar outcomes and pharmacodynamic efficacy parameters, except for isolates in the susceptible dose-dependent category, such as Candida glabrata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between dendritic cells (DCs) and T cells control the decision between activation and tolerance induction. Thromboxane A2 (TXA2) and its receptor TP have been suggested to regulate adaptive immune responses through control of T cell-DC interactions. Here, we show that this control is achieved by selectively reducing expansion of low-avidity CD4(+) T cells. During inflammation, weak tetramer-binding TP-deficient CD4(+) T cells were preferentially expanded compared with TP-proficient CD4(+) T cells. Using intravital imaging of cellular interactions in reactive peripheral lymph nodes (PLNs), we found that TXA2 led to disruption of low- but not high-avidity interactions between DCs and CD4(+) T cells. Lack of TP correlated with higher expression of activation markers on stimulated CD4(+) T cells and with augmented accumulation of follicular helper T cells (TFH), which correlated with increased low-avidity IgG responses. In sum, our data suggest that tonic suppression of weak CD4(+) T cell-DC interactions by TXA2-TP signaling improves the overall quality of adaptive immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.

Relevância:

20.00% 20.00%

Publicador: