943 resultados para Cymbopogon citratus (DC.) Stapf-Essential oil
Resumo:
The Banisteriopsis genus is widespread in traditional medicine. This work aims to contribute with information about the chemical composition and on the evaluation of the biological activity of the essential oil, the ethanol extract of the leaves and partitions of the Banisteriopsis laevifolia. The phytochemical screeningtest of ethanol extract and partitions of leaves indicated the presence of flavonoids, terpenoids, saponins, phenols and steroids compounds. Nitrogenous compounds, characteristic of some species of this family, were not detected. Flavonoids were the predominant metabolite, with the highest concentrations on the partitions ethyl acetate and n-butanol. The antibacterial activity, antifungal and cytotoxicity of the essetial oil, ethanol extract and partitions were assyed by microdilution broth method (MBM), where the minimum inhibitory concentrations (MIC) were calculated. The ethanol extract and partitions did not inhibit growth against to Gram positive bacteria tested, with MIC less than 400 mg L-1. For the Gram negative bacteria tested, the hexane and hydroethanol partitios were more effective against F. nucleatum bacteria (MIC 100 ug mL-1). The ethanol extract showed antifungal activity with MIC of 31.2 mg L-1. Ethyl acetate and n-butanol partitions showed MIC 187.5 mg L-1 and 93.7 mg L-1, respectively, arousing interest for isolation studies. The antioxidant activity was evaluated by the DPPH free radical method. The ethanolic extract, ethyl acetate and n-butanol partitions were active, since they showed EC50 values (4.53 ug mL-1, 4.07 and 8.39 ug mL-1, respectively), values equivalent to the BHT (7.3 mg L-1). The analysis by HPLC-MS/MS of the most active fractions (ethyl acetate and n-butanol) identified phenolic compounds (flavonols and phenolic acids) which exert recognized biological activity. The GC-MS analysis of the essential oils from leaves collected in two periods studied (dry and wet), showed a small variation in the number of compounds. The major classes identified for the oil collected in the dry period were aliphatic alcohols (23,4%), terpenoids (18.7%), sterols (10.4%) and long-chain alkanes (9.2%) compounds. Terpenoids (26.8%) were the major class for the rain season. The major compounds (3Z) -hexenol, phytol and untriacontano are present in the two seasons but in different amounts (19.4%, 9.8% and 7.5% during the dry season, and 17.0 %, 14.9% and 15.3% in the rainy season, respectively). The essential oil from rainy season was not effective against to the oral bacteria Gram positive and Gram negative tested. However, showed significant antifungal activity with MIC 1000 mg L-1 against Candidas. Thus, the promising results with respect to biological assays of ethanolic extract and partitions from B. laevifolia contributed to the chemical and biological knowledge of the species B. laevifolia.
Resumo:
The abuse of antibiotics and the emergence of multi-drug resistant bacterial strains have created the need to explore alternative methods of controlling microbial pathogens. The bacteriocin family of antimicrobial peptides has been proposed as one such alternative to classic antibiotics. Nisin A belongs to the subgroup of bacteriocins called the lantibiotics, which contain several unusual amino acids as a consequence of enzyme-mediated post-translational modifications. As nisin is produced by generally regarded as safe (GRAS) microorganisms, it could potentially be applied in a clinical setting. However, as lantibiotics are naturally produced in such small quantities, this can hinder their industrial potential. In order to overcome this, several approaches can be utilised. For example, given the gene encoded nature of lantibiotics, genetic engineering approaches can be implemented in order to yield variants with enhanced properties. Here, the use of mutagenesis-based strategies was employed to obtain a derivative of nisin with enhanced bioactivity in vitro. Investigations with purified peptide highlighted the enhanced specific activity of this variant, nisin M21V, against food-borne Listeria monocytogenes strains. Furthermore, this specific enhanced bioactivity was evident in a mouse model of listeriosis. Reductions in bioluminescence and microbial counts in organs from infected mice were observed following treatment with nisin M21V compared to that of wild-type nisin A. Peptide bioengineering approaches were also implemented to obtain additional novel derivatives of nisin. The generation of “S5X” and “S33X” banks (representing a change of natural serines at positions 5 and 33 to all possible alternative residues) by a combination of site-saturation and site-directed mutagenesis led to the identification of several derivatives exhibiting improved stability. This allowed the rational design of variants with enhanced stability compared to that of wild type nisin. Another means of tackling issues associated with lantibiotic yield is to combine lantibiotics with other antimicrobials. This could circumvent the need for enhanced production while also reducing concentrations of the peptide antimicrobials. We observed that combinations of nisin variants and low levels of plant essential oils (thymol, carvacrol, trans-cinnamaldehyde) significantly controlled Gram negative foodborne pathogens in in vitro assays compared to nisin A-essential oil combinations. This enhanced control was also evident in model food systems. Nisin variants used in conjunction with carvacrol significantly reduced numbers of E. coli O157:H7 in apple juice while a commercial nisin preparation used in combination with citric acid significantly controlled C. sakazakii in infant milk formula. It is noteworthy that while nisin is generally associated with Gram positive targets, upon combination with plant essential oils the spectrum of inhibition was broadened to Gram negative targets.
Resumo:
The crops are affected by pests and diseases that decrease productivity. Among them are the damping off of seedlings that can occur in pre and post-emergence. In bean crops, cucumber and beet these diseases occur, being caused by various pathogens, especialy fitopathogenic fungi. Several measures are used for the controle of such diseases, among them, is the chemical seed treatment fungicides. However, society has become increasingly concerned about the quality and food and environmental contamination, generation a growting search for sensitive products to humans and the environment. The use of essential oils to control plant pathogens is an example of alternative tested by science in the search for less aggressive technologies. This study aimed to evaluate the efficiency of the use of essential oil Aloysia citriodora, in control of pathogens causing damping off in beans, cucumber and beet. This thesis was divided in four chapters, the introductory first, and the other addressing the control of Pythium sp. in beans, Sclerotinia sclerotiorum on cucumber, and Fusarium sp. on beet. The methodology consisted of four experiments in each pathosystem, with all the work done at the Federal Technological University of Parana, Campus Dois Vizinhos. In the first experiment evaluated the fungistatic and fungicidal effect of the essential oil of A. citriodora on PDA in vitro in mycelial growth of pathogens studied. In the second experiment evaluated the in vitro effect of essential oil concentrations of A. citriodora in BD medium on microscope slides, on the germination of sporangia Pythium sp. and conidia Fusarium sp., and in Petri dishes with PDA medium, the sclerotia germination speed index of S. sclerotiorum. In the third experiment, we evaluated in germination test in paper roll (PR), the phytotoxic effect or not the use of essential oil concentrations of A. citriodora in dry bean seed, cucumber and beet. The variables used to assess this experiment were the germination percentage, mediun green mass per plant and average length of seedlings. In the fourth experiment we assessed the effect of treating bean seeds, cucumber and beet with essential oil contents of A. citriodora, seeds in their subsequent substrates contamined with pathogens studied, Pythium sp., S. sclerotiorum and Fusarium sp. In this experiment we used the following variables: percentage of emergence, percentage of post-emergence damping off, green average mass per plant, average length per plant and biochemical analyzes. The biochemistry of plant tissues evaluated were as follows: protein content, enzymatic activities of peroxidases, phenylalanine ammonia-liase (PAL), chitinases and β-1,3-glucanases. The in vitro results show that the essential oil has fungistatic and fungicidal effect on mycelial growth, on sporangia germination, conidia and sclerotia of the pathogens studied in this work, wich may be related to its major components, citral and limonene. The oil also exhibits low phytotoxicity to seeds of the species studied, only in beans decreases germination in most studied dosage (0,25%), cucumber also in the higher dosage (0,25%) reduce the length of seedlings, and beet there were no negative effects to the seedlings. In the test in substrate contaminated with the pathogens, the use of essential oil: increased germination and decreased post emergence damping off of beans seedlings; at a concentration of 0,0625% decreases post emergence damping off in cucumber. In biochemical analyzes found an increase in the enzymatic activity of peroxidases and β-1,3-glucanases on beans, and glucanases on cucumber, and increased enzyme activity of peroxidases on beet, showing action in resistance induction at damping off.
Resumo:
The objective of this study was to determine the antioxidant effect of essential oregano and alfavaca oil on the fatty acid profile of palm oil, used in industrial potato chips processing, aiming to reduce the oxidative state of palm oil. Essential oregano oil was obtained from industrial residues and commercial essential oregano oil was also acquired. The antioxidant activity of Oregano’s essential oil was taken by DPPH method. The DPPH analysis of the essential oil of oregano residue resulted in an IC50 of 797.04 mg.mL-1 and the essential oil of commercial oregano was 424.25 mg.mL-1. Regarding the content of total phenols, the essential oil of commercial oregano showed 0.167 ± 0.058 ug EAG.g-1. Based on these results, concentrations of 50, 100 e 150ug.g-1 of commercial oregano essential oil was added to palm oil and the fatty acid profile was determined by gas cromatography. Analysis were done with palm oil without being used in frying processes and without added essential oil, as well as with the different essential oil concentrations submitted at three frying processes at one single day. In the second part of the project, the effect of oreganos’s comercial essential oil compared to alfavacão essential oil, at the concentration of 100ug.g-1 in palm oil, and submitted to three frying processes during eleven cycles, was studied. The lipid profile was similar to that described in the literature, which an increase in the number of frying times caused a polyunsaturated fatty acids decrease and, therefore, a proportional increase in saturated fatty acids. It was noted an increase in the amounts of total saturated fatty acids from 43.36% (control) to 43.60% (palm oil with essential oil after 11 frying cycles at the concentration of 100ug.g-1). This fact proves that during the frying process, there is an increase in the rate of formation of saturated fatty acids. However, the addition of oregano essential oil did not provide significant change in the fatty acids of palm oil used in frying process of potato chips. The addition of oregano essential oil in a concentration of 100 ug./mL-1 until the third frying cycle showed a reduction effect of trans fatty acid formation. Although, during 11 frying cycles it was not noticed the essential oil effect under trans fatty acid formation. It can be suggested that this factor may be correlated to the frying time, which may not have been sufficient for significant formation of saturated and trans compounds.
Resumo:
Syzygium anisatum (formerly Backhousia anisata and Anetholea anisata) is an Australian rainforest tree with leaves that produce an essential oil (EO) that has the characteristic aroma of aniseed. It is referred to as aniseed myrtle or anise myrtle in the trade and the fresh and dried leaves of this plant are used as a herb in culinary applications. The EO is extracted by steam distillation of the leaves and the major aromatic volatile compound is anethole. The EO has broad spectrum antimicrobial activity but is more effective against bacteria than fungi. Indigenous Australians have used anise myrtle for its medicinal values and in recent times it has been used as a flavoring agent by the food and beverage industry. This chapter covers the use of anise myrtle EO in food and agricultural applications, botanical aspects, and chemical composition.
Resumo:
Lemon myrtle has been traditionally used by indigenous Australians for cooking and healing. More recently, lemon myrtle leaves are used as a dry or fresh herb in food applications and the essential oil (EO) used as a flavoring agent in food and beverages. The leaf of the lemon myrtle (Backhousia citriodora) is steam distilled to produce the EO. Lemon myrtle EO is known for its characteristic lemon flavor and the major chemical component contributing to the aroma is citral. The EO has broad spectrum antimicrobial activity and is very effective against fungi and has increased the potential of using the EO in food preservation and treatment of postharvest diseases in fruits. This chapter covers the use of lemon myrtle EO in food and agriculture applications, general usage, botanical aspects, and chemical composition.
Resumo:
Tasmannia lanceolata, commonly known as Tasmanian pepper leaf or mountain pepper, is an Australian native plant that produces an essential oil with a characteristic pungent flavor attributed to the sesquiterpene polygodial. The dried and fresh leaves are used in culinary applications. The essential oil is produced by a solvent extraction process, and the resultant concrete is a rich source of the principal pungent molecule polygodial and other volatiles. The Tasmanian pepper leaf extract has broad-spectrum antimicrobial activity and is very effective against fungi, especially yeasts. This demonstrates its potential to be used in the food industry as a natural preservative. Indigenous Australians have used Tasmanian pepper leaves for therapeutic purposes; in recent times, it is been used as a flavoring agent and enhancer of pungency in food products. This chapter covers the use of Tasmanian pepper leaf essential oil in food applications, its botanical aspects, and its chemical composition.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is a major horticultural insect pest in Australia which significantly limits domestic and international market access for Australian horticultural produce. Citrus is one of the industries seriously affected by the fruit fly problem in Australia. This research investigated the effect of citrus peel essential oil chemicals on B. tryoni larval survival in five different commercially important Citrus species and cultivars as a way of better understanding fruit susceptibility. The fruits used were Murcott Mandarin, Navel orange, Eureka lemon, Valencia orange and yellow grapefruit. The essential oils of each citrus type were extracted using hydrodistillation and then mixed, at different concentrations, with artificial larval diets to which B. tryoni eggs were added. Surviving larvae were counted after five trial days. The same process was repeated for six essential oil components. Regression analysis of increasing oil concentration against larval survival showed that the crude oil blends of Navel orange, Eureka lemon and yellow grapefruit had significant negative effects on B. tryoni larval survival, but no such effects were seen for Murcott Mandarin and Valencia orange. Of the individual essential oil fractions, only D-limonene had a significant effect on B. tryoni larval survival, with this chemical being highly toxic at very low concentrations. The results of this study open up opportunities for incorporating B. tryoni resistance mechanisms into citrus through minor peel property changes which would not impact on the eating attributes of the fruit.
Resumo:
The Baccharis oreophila Malme belongs to the Asteraceae family. In Brazil are reported 120 species of Baccharis, most located in the South and Southeast regions, the latter presents the highest prevalence, especially in the state of São Paulo. Asteraceae is well known for the production of essential oils, which are liquid, volatile and aromatic substances produced by plants specialized for metabolism possess antibacterial, antifungal, and antioxidant properties. Thus, this study aimed, perform chemical and evaluate the antimicrobial and antioxidant activity of essential oil from dried leaves of B. oreophila collected in winter in Piraquara, Paraná. Obtaining essential oil was given by hydrodistillation in Clevenger apparatus, in triplicate, and the analysis was done using a gas chromatograph coupled to mass spectrometry GC / MS. The identification of the components was made based on retention indices calculated from the co-injection of a series of n-alkanes, followed by comparison of their mass spectra with literature. The antimicrobial activity was assessed by disk diffusion method and microdilution. The antioxidant activity was evaluated by the methods DPPH equivalent Trolox, ABTS and FRAP equivalent Trolox equivalent ferrous sulfate. The essential oil showed 0.47% yield. They identified 57 components (89.38%), 1.51% were classified as hydrogenated monoterpenes, oxygenated monoterpenes 15.14%, 34.84% and 37.87% hydrogenated sesquiterpenes sesquiterpenes oxygenates. As the major components were detected kusimono (16.37%), spathulenol (16.12%), the δ-cadinene (5.68%) and bicyclogermacrene (4.09%). The antimicrobial activity of essential oil was performed for the microorganisms Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Candida albicans ATCC 18804 and Candida tropicalis ATCC 13803, the results showed that the essential oil showed activity against S. aureus Inhibitory Concentration minimum (CIM) 1250 g/mL. In the evaluation of antioxidant activity essential oil showed antioxidant potential for the three methods evaluated, with values of 1,468 m.mol.L-1, 7.126 m.mol.L-1 and 45.515 m.mol.L-1 for ABTS, DPPH and FRAP, respectively. These results demonstrate that the essential oil of B. oreophila showed antimicrobial potential against S. aureus and interesting antioxidant activity, especially for the reducing power of iron ion, demonstrating their potential for future industrial applications. It is important to emphasize that were not observed in the literature reports highlighting such biological properties of B. oreophila oil.
Resumo:
A espécie Myrocarpus frondosus é nativa da região sul do Brasil, onde é conhecida como cabreúva. É uma árvore de grande porte, e sua madeira é utilizada como reservatório de bebidas destiladas, principalmente a cachaça. Na medicina popular a espécie é utilizada no tratamento de varizes. Neste trabalho pioneiro, o óleo essencial foi extraído das folhas de três árvores de cabreúva, mensalmente no período de um ano. A determinação da composição química foi realizada através das técnicas cromatográficas CG-DIC e GC-EM, identificando trinta e cinco compostos no óleo essencial, sendo o β-pineno, biciclogermacreno e D-germacreno os terpenos majoritários. O rendimento do óleo, extraído por hidrodestilação, foi diretamente proporcional à temperatura ambiente e à radiação solar na maioria dos períodos. A espécie M. frondosus apresentou o máximo de 66,91% de atividade antioxidante para concentração 250 µg/mL do óleo essencial, utilizando o método do DPPH, e máximo de 1660,74 µM FeSO4/g de óleo essencial pelo método FRAP, e os compostos β- cariofileno, α-humuleno, D-germacreno e biciclogermacreno apresentaram maior relação com essa atividade.
Resumo:
La presente investigación se planteó reemplazar el uso de insecticidas sintéticos, formulando un champú bioinsecticida de aplicación canina mediante la acción biocida del aceite esencial deAmbrosia arborescens Mill (Altamisa). La planta se recolectó en las laderas del rio Tomebamba, cercanas al Campus Balzay de la Universidad de Cuenca Parroquia San Joaquín. La recolección se realizó durante los meses de Enero a Marzo del 2016. El desarrollo y formulación del producto se realizó en el Laboratorio de Biotecnología, Facultad de Ciencias Químicas de la Universidad de Cuenca. La obtención del aceite esencial de A. arborescens se realizó mediante hidrodestilación por el método Clevenger, con un rendimiento del 0,14%. La actividad biocida se estableció en un ensayo “in vitro” ante el nematodo Panagrellus redivirus, determinándose la dosis letal (DL50) de 250 uL/mL. Debido a la moderada DL50y bajo rendimiento, se planteó como estrategia, determinar el DL50 del extracto orgánico de A. arborescens, el cual se obtuvo mediante una extracción con metanol, consiguiendo un rendimiento del 2 % y DL50de 31,25 uL/mL. De acuerdo estos resultados se procedió a realizar pruebas en pulgas de perros(Ctenocephalides canis) con el extracto de A. arborescens, estableciendo una efectividad del 100 % a la concentración de 46,875 mg/mL en el periodo de tiempo más corto, siendo esta la dosis aplicada para la formulación del champú. El extracto metanólico de A. arborescens presentó elevada actividad biocida, comparado con el aceite esencial. Esta sustancia activa es promisoria en la formulación de bioinsecticidas para mascotas.
Resumo:
The biofilms microbial forms of association are responsible for generating, accelerating and / or induce the process of corrosion. The damage generated in the petroleum industry for this type of corrosion is significatives, representing major investment for your control. The aim of this study was to evaluate such tests antibiograms the effects of extracts of Jatropha curcas and essential oil of Lippia gracilis Schauer on microrganisms isolated from water samples and, thereafter, select the most effective natural product for further evaluation of biofilms formed in dynamic system. Extracts of J. curcas were not efficient on the complete inhibition of microbial growth in tests type antibiogram, and essential oil of L. gracilis Schauer most effective and determined for the other tests. A standard concentration of essential oil of 20 μL was chosen and established for the evaluation of the biofilms and the rate of corrosion. The biocide effect was determined by microbial counts of five types of microorganisms: aerobic bacteria, precipitating iron, total anaerobic, sulphate reducers (BRS) and fungi. The rate of corrosion was measured by loss of mass. Molecular identification and scanning electron microscopy (SEM) were performed. The data showed reduction to zero of the most probable number (MPN) of bacteria precipitating iron and BRS from 115 and 113 minutes of contact, respectively. There was also inhibited in fungi, reducing to zero the rate of colony-forming units (CFU) from 74 minutes of exposure. However, for aerobic and anaerobic bacteria there was no significant difference in the time of exposure to the essential oil, remaining constant. The rate of corrosion was also influenced by the presence of oil. The essential oil of L. gracilis was shown to be potentially effective
Resumo:
Malaria, also popularly known as maleita , intermittent fever, paludism, impaludism, third fever or fourth fever, is an acute infectious febrile disease, which, in human beings, is caused by four species: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. Malaria, one of the main infectious diseases in the world, is the most important parasitoses, with 250 million annual cases and more than 1 million deaths per year, mainly in children younger than live years of age. The prophylactic and therapeutic arsenal against malaria is quite restricted, since all the antimalarials currently in use have some limitation. Many plant species belonging to several families have been tested in vivo, using the murine experimental model Plasmodium berghei or in vitro against P. falciparum, and this search has been directed toward plants with antithermal, antimalarial or antiinflammatory properties used in popular Brazilian bolk medicine. Studies assessing the biological activity of medicinal plant essential oils have revealed activities of interest, such as insecticidal, spasmolytic and antiplasmodic action. It has also been scientifically established that around 60% of essential oils have antifungal properties and that 35% exhibit antibacterial properties. In our investigation, essential oils were obtained from the species Vanillosmopsis arborea, Lippia sidoides and Croton zethneri which are found in the bioregion of Araripe-Ceará. The chemical composition of these essential oils was partially characterized and the presence of monoterpenes and sesquiterpenes. The acute toxicity of these oils was assessed in healthy mice at different doses applied on a single day and on four consecutive days, and in vitro cytotoxicity in HeLa and Raw cell lines was determined at different concentrations. The in vivo tests obtained lethal dose values of 7,1 mg/Kg (doses administered on a single day) and 1,8 mg/Kg (doses administered over four days) for 50% of the animals. In the in vitro tests, the inhibitory concentration for 50% of cell growth in Hela cell lines was 588 μg/mL (essential oil from C. zethneri after 48 h), from 340-555 μg/mL (essential oil from L. sidoides, after 24 and 48 h). The essential oil from V. arborea showed no cytotoxicity and none of the essential oils were cytotoxic in Raw cell lines. These data suggest a moderate toxicity in the essential XVIII oils under study, a finding that does not impede their testing in in vivo antimalarial assays. Was shown the antimalarial activity of the essential oils in mice infected with P. berghei was assessed. The three species showed antimalarial activity from 36%-57% for the essential oil from the stem of V. arborea; from 32%-82% for the essential oil from the leaves of L. sidoides and from 40%-70% of reduction for the essential oil from the leaves of C. zethneri. This is the first study showing evidence of antimalarial activity with these species from northeast Brazil. Further studies to isolate the active ingredients of these oils are needed to determine if a single active ingredient accounts for the antimalarial activity or if a complex integration of all the compounds present occurs, a situation reflected in their biological activity
Resumo:
A especie vegetal Argentum conyzoides L., empregada popularmente como antidiarreica, antiespasmódica, carminativa, febrifuga, antirreumática teve sua propriedade anti inflamatória comprovada cientificamente, foi estudada morfológica e anatomicamente com vistas a sua caracterização farmacognostica . O extrato fluido da referida planta foi analisado por cromatografia em camada delgada, através de diversos sistemas cromatográficas, com vistas a fornecer subsídios ao controle de qualidade deste insumo farmacêutico.
Resumo:
The thesis deals with the different properties and characteristics of oil of lemon grass.. The oil of lemongrass (Cymbopogon flexuosus) is one of the most important essential oils. It will continue to be one of the "big ten" of our essential oils1. Lemongrass oil is obtained from certain species of grasses of the genus cymbopogon. The genus consists of about 80 species, 10 to 12 of which are known to occur in India. Lemongrass is a stoloniferous plant. The plant grows wild in many tropical andsemitropical parts of Asia, Africa and in parts of Central America and South America. For the extraction of the oil however only cultivated lemongrass is employed. The trade distinguishes two Principal types of lemongrass oil, viz. the East Indian Oil and West Indian Oil. There was much confusion, years ago, about the taxonomy of the plants which yield theEast Indian and West Indian types of lemongrass oil, however Stapf2 ended the long controversy of identifying the plant yielding the East Indian type oil as Cymbopogon flexuosus (D.C.) Stapf and the plant yielding the West Indian type oil as Cymbopogon citrates (D.C.) stapf. The 2 plants have_been named variously also Andropogon nardus var. Flexuosus Hack or A. citratus D.C. respectively