875 resultados para Continuous Variable Systems
Resumo:
This paper discusses the design of gain- scheduled sampled-data controllers for continuous-time polytopic linear parameter-varying systems. The scheduling variables are assumed to available only at the sampling instants, and a bound on the time-variation of the scheduling parameters is also assumed to be known. The resultant gain-scheduled controllers improve the maximum achieveable delay bound over previous constant-gain ones in the literature.
Resumo:
The least-mean-fourth (LMF) algorithm is known for its fast convergence and lower steady state error, especially in sub-Gaussian noise environments. Recent work on normalised versions of the LMF algorithm has further enhanced its stability and performance in both Gaussian and sub-Gaussian noise environments. For example, the recently developed normalised LMF (XE-NLMF) algorithm is normalised by the mixed signal and error powers, and weighted by a fixed mixed-power parameter. Unfortunately, this algorithm depends on the selection of this mixing parameter. In this work, a time-varying mixed-power parameter technique is introduced to overcome this dependency. A convergence analysis, transient analysis, and steady-state behaviour of the proposed algorithm are derived and verified through simulations. An enhancement in performance is obtained through the use of this technique in two different scenarios. Moreover, the tracking analysis of the proposed algorithm is carried out in the presence of two sources of nonstationarities: (1) carrier frequency offset between transmitter and receiver and (2) random variations in the environment. Close agreement between analysis and simulation results is obtained. The results show that, unlike in the stationary case, the steady-state excess mean-square error is not a monotonically increasing function of the step size. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
For some time there is a large interest in variable step-size methods for adaptive filtering. Recently, a few stochastic gradient algorithms have been proposed, which are based on cost functions that have exponential dependence on the chosen error. However, we have experienced that the cost function based on exponential of the squared error does not always satisfactorily converge. In this paper we modify this cost function in order to improve the convergence of exponentiated cost function and the novel ECVSS (exponentiated convex variable step-size) stochastic gradient algorithm is obtained. The proposed technique has attractive properties in both stationary and abrupt-change situations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
The field of surface polariton physics really took off with the prism coupling techniques developed by Kretschmann and Raether, and by Otto. This article reports on the construction and operation of a rotatable, in vacuo, variable temperature, Otto coupler with a coupling gap that can be varied by remote control. The specific design attributes of the system offer additional advantages to those of standard Otto systems of (i) temperature variation (ambient to 85 K), and (ii) the use of a valuable, additional reference point, namely the gap-independent reflectance at the Brewster angle at any given, fixed temperature. The instrument is placed firmly in a historical context of developments in the field. The efficacy of the coupler is demonstrated by sample attenuated total reflectance results on films of platinum, niobium, and yttrium barium copper oxide and on aluminum/gallium arsenide (Al/GaAs) Schottky diode structures. (C) 2000 American Institute of Physics. [S0034-6748(00)02411-4].
Resumo:
The validity of load estimates from intermittent, instantaneous grab sampling is dependent on adequate spatial coverage by monitoring networks and a sampling frequency that re?ects the variability in the system under study. Catchments with a ?ashy hydrology due to surface runoff pose a particular challenge as intense short duration rainfall events may account for a signi?cant portion of the total diffuse transfer of pollution from soil to water in any hydrological year. This can also be exacerbated by the presence of strong background pollution signals from point sources during low flows. In this paper, a range of sampling methodologies and load estimation techniques are applied to phosphorus data from such a surface water dominated river system, instrumented at three sub-catchments (ranging from 3 to 5 km2 in area) with near-continuous monitoring stations. Systematic and Monte Carlo approaches were applied to simulate grab sampling using multiple strategies and to calculate an estimated load, Le based on established load estimation methods. Comparison with the actual load, Lt, revealed signi?cant average underestimation, of up to 60%, and high variability for all feasible sampling approaches. Further analysis of the time series provides an insight into these observations; revealing peak frequencies and power-law scaling in the distributions of P concentration, discharge and load associated with surface runoff and background transfers. Results indicate that only near-continuous monitoring that re?ects the rapid temporal changes in these river systems is adequate for comparative monitoring and evaluation purposes. While the implications of this analysis may be more tenable to small scale ?ashy systems, this represents an appropriate scale in terms of evaluating catchment mitigation strategies such as agri-environmental policies for managing diffuse P transfers in complex landscapes.
Resumo:
A wide range of organic pollutants can be destroyed by semiconductor photocatalysis using titania. The purification of water and air contaminated with organic pollutants has been investigated by semiconductor photocatalysis for many years and in attempts to improve the purification rate platinum and palladium have been deposited, usually as fine particles, on the titania surface. Such deposits are expected to improve the rate of reduction of oxygen and so reduce the probability of electron-hole recombination and increase the overall rate of the reaction. The effectiveness of the deposits is reviewed here and appears very variable with reported rate enhancement factors ranging from 8 to 0.1. Semiconductor photocatalysis can be used to purify air (at temperatures > 100 degrees C) and Pt deposits can markedly improve the overall rate of mineralisation. However, volatile organic compounds containing an heteroatom can deactivate the photocatalyst completely and irreversibly. Factors contributing to the success of the processes are considered. The use of chloro-Pt(IV)-titania and other chloro-platinum group metals-titania complexes as possible visible light sensitisers for water and air purification is briefly reviewed.
Resumo:
In many situations, the number of data points is fixed, and the asymptotic convergence results of popular model selection tools may not be useful. A new algorithm for model selection, RIVAL (removing irrelevant variables amidst Lasso iterations), is presented and shown to be particularly effective for a large but fixed number of data points. The algorithm is motivated by an application of nuclear material detection where all unknown parameters are to be non-negative. Thus, positive Lasso and its variants are analyzed. Then, RIVAL is proposed and is shown to have some desirable properties, namely the number of data points needed to have convergence is smaller than existing methods.
Resumo:
This paper presents a voltage and power quality enhancement scheme for a doubly-fed induction generator (DFIG) wind farm during variable wind conditions. The wind profiles were derived considering the measured data at a DFIG wind farm located in Northern Ireland (NI). The aggregated DFIG wind farm model was validated using measured data at a wind farm during variable generation. The voltage control strategy was developed considering the X/R ratio of the wind farm feeder which connects the wind farm and the grid. The performance of the proposed strategy was evaluated for different X/R ratios, and wind profiles with different characteristics. The impact of flicker propagation along the wind farm feeder and effectiveness of the proposed strategy is also evaluated with consumer loads connected to the wind farm feeder. It is shown that voltage variability and short-term flicker severity is significantly reduced following implementation of the novel strategy described.
Resumo:
This paper studies the system modelling and control aspects of switched reluctance generator (SRG) based variable speed wind turbines. A control system is implemented to provide proper operation of the SRG as well as power tracking capabilities for varying wind speeds. The control system for the grid side inverter that will allow the SRG to properly generate power to the system is also presented. Studies are presented of both the SRG and inverter control systems capabilities during a balanced three-phase fault. The paper will demonstrate that the SRG based wind turbine presents a feasible variable wind speed solution with good fault response capabilities.
Resumo:
The combination of ionic liquids (ILs) and supercritical CO2 (scCO2) allows efficient catalytic processes to be developed. Catalyst separation is generally a major challenge when enzymes or homogeneous organometallic catalysts are utilised for reactions, and IL–scCO2 systems address these separation problems, facilitating the recycling or continual use of the catalyst. Typically these systems involve a catalyst being dissolved in an IL and this is where it remains during the process, with scCO2 extracting the products from the IL (catalyst) phase. ILs and many catalysts are not soluble in scCO2 and this facilitates the clean separation of products from the catalyst and IL. When the pressure is reduced in a collection chamber, the scCO2 returns to CO2 gas and products can be obtained without contamination of catalyst or solvents. It is possible to operate IL–scCO2 systems in a continuous flow manner and this further improves the efficiency and industrial potential of these systems. This chapter will introduce the fundamental properties of these multiphase catalytic systems. It will also highlight key examples of catalytic processes from the academic literature which illustrate the benefits of utilising this combination of solvents for catalysis
Resumo:
The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP 0247-25 B). The remnant is in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. it is a pre-helium white dwarf (pre-He-WD). We have used the photometric database from theWide Angle Search for Planets (WASP) to find 17 eclipsing binary stars with orbital periods P = 0.7-2.2 d with similar light curves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic light curves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for six of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (≈0.2M⊙). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25 B. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
The allocation of a large amount of bandwidth by regulating bodies in the 70/80 GHz band, i.e., the E-band, has opened up new potentials and challenges for providing affordable and reliable Gigabit per second wireless point-to-point links. This article first reviews the available bandwidth and licensing regulations in the E-band. Subsequently, different propagation models, e.g., the ITU-R and Cane models, are compared against measurement results and it is concluded that to meet specific availability requirements, E-band wireless systems may need to be designed with larger fade margins compared to microwave systems. A similar comparison is carried out between measurements and models for oscillator phase noise. It is confirmed that phase noise characteristics, that are neglected by the models used for narrowband systems, need to be taken into account for the wideband systems deployed in the E-band. Next, a new multi-input multi-output (MIMO) transceiver design, termed continuous aperture phased (CAP)-MIMO, is presented. Simulations show that CAP-MIMO enables E-band systems to achieve fiber-optic like throughputs. Finally, it is argued that full-duplex relaying can be used to greatly enhance the coverage of E-band systems without sacrificing throughput, thus, facilitating their application in establishing the backhaul of heterogeneous networks.