990 resultados para Clifford, Algebra de
Resumo:
This paper introduces the metaphorism pattern of relational specification and addresses how specification following this pattern can be refined into recursive programs. Metaphorisms express input-output relationships which preserve relevant information while at the same time some intended optimization takes place. Text processing, sorting, representation changers, etc., are examples of metaphorisms. The kind of metaphorism refinement proposed in this paper is a strategy known as change of virtual data structure. It gives sufficient conditions for such implementations to be calculated using relation algebra and illustrates the strategy with the derivation of quicksort as example.
Resumo:
We consider implicit signatures over finite semigroups determined by sets of pseudonatural numbers. We prove that, under relatively simple hypotheses on a pseudovariety V of semigroups, the finitely generated free algebra for the largest such signature is closed under taking factors within the free pro-V semigroup on the same set of generators. Furthermore, we show that the natural analogue of the Pin-Reutenauer descriptive procedure for the closure of a rational language in the free group with respect to the profinite topology holds for the pseudovariety of all finite semigroups. As an application, we establish that a pseudovariety enjoys this property if and only if it is full.
Resumo:
El proyecto consta de varios temas interrelacionados, siendo el área general, la teoría espectral del Laplaciano en variedades localmente simétricas y sus aplicaciones. Cada tema consta de varios subproyectos. * Distribución de sumas de Kloosterman, funciones de zeta. * Transformada T (y/psi) para grupos de rango 1. * M- invariantes en las álgebras simétrica y universal. * Series de Poincaré generalizadas. * Variedades compactas planas isospectrales. * Construcción de variedades de Hsntzsche-Wendt generalizadas. * Estructuras de Clifford de variedades localmente homogeneas. * Distribución de puntos reticulares en esp. Simétricos de curvatura no positiva. * Resolvente del laplaciano y sus residuos en espacios localmente simétricos de curvatura no positiva.
Resumo:
Existe en el Museo Municipal de Bellas Artes "Dr. Genaro Pérez" una galería de retratos que le confiere uno de sus rasgos distintivos. La galería ocupa dos salas ubicadas en la planta baja, abiertas al hall central, conectadas entre sí. La sala mayor cobija un total de diez pinturas al óleo, de las cuales ocho son retratos y dos paisajes. La sala menor contiene seis pinturas al óleo, todos retratos y dos esculturas de Luis Falcini. Todos los retratados son miembros de familias tradicionales de Córdoba y corresponden al período 1860-1880. (...) La galería supone un particular trabajo en el espacio, para que éste sea recorrido por un sujeto que se supone vertical, y cuyo sentido preponderante es la visión. La visión, que en la tradición de la moderna pintura al óleo se relaciona con el tacto, ofrece desde la modernidad un privilegiado lugar en la percepción de un mundo claro, palpable y por lo tanto apropiable. La galería es, desde su construcción en el Renacimiento Italiano, un espacio de exhibición del poder. Coleccionar y exhibir este poderío para ciertos y específicos espectadores, es un ritual que maneja el príncipe y sabrán heredar los burgueses. Como nos recuerda Clifford, el término inglés "collection" remite a nociones de "recopilación" y "recuerdo". (...) la noción de que esta recolección involucra es la acumulación de riquezas, que seguramente no es universal. La recolección en la modernidad puede verse como una estrategia para el despliegue de un sujeto, una cultura y una autenticidad posesivos, un ritual, una dramatización sobre apropiaciones del mundo recorridas por un gusto unificante, el del grupo recolector. Cuando la galería es pública, este gusto está en manos de ciertas instituciones artísticas, que no están aisladas(...). Por eso la historia de la galería y la del museo aparecen en diálogo con la historia de la ciudad, de la educación artística, de los salones y otros modos de sancionar dicho gusto(...). Objetivos: 1. Generales. * Aplicar marcos interpretativos interdisciplinarios a la producción artística local. * Colaborar en la historia de los movimientos culturales de Córdoba, indagando en el momento de la construcción de su escuela pictórica. 2. Específicos. * Relacionar los retratos expuestos, en especial los de Genaro Pérez, con fotografías contemporáneas. * Detectar y relacionar diferentes textos artísticos, periodísticos, literarios, históricos, jurídicos sobre Genaro Pérez y su obra.
Resumo:
Em uma zona cristalográfica podem ocorrer símbolos de faces, cujos índices de Miller, colocados em determinada ordem, formam aquilo que, em algebra, se conhece sob a designação de "série harmônica". Este trabalho mostra como tal possibilidade pode ser pesquisada.
Resumo:
Let A be a simple, unital, finite, and exact C*-algebra which absorbs the Jiang-Su algebra Z tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomor phism, and prove the conjecture in several cases. In these same cases - Z-stable algebras all - we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of Z-stable C*-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott's classification conjecture -that K-theoretic invariants will classify separable and nuclear C*-algebras- with the recent appearance of counterexamples to its strongest concrete form.
Resumo:
The purpose of this short note is to prove that a stable separable C*-algebra with real rank zero has the so-called corona factorization property, that is, all the full multiplier projections are properly in finite. Enroute to our result, we consider conditions under which a real rank zero C*-algebra admits an injection of the compact operators (a question already considered in [21]).
Resumo:
In this paper, results known about the artinian and noetherian conditions for the Leavitt path algebras of graphs with finitely many vertices are extended to all row-finite graphs. In our first main result, necessary and sufficient conditions on a row-finite graph E are given so that the corresponding (not necessarily unital) Leavitt path K-algebra L(E) is semisimple. These are precisely the algebras L(E)for which every corner is left (equivalently, right)artinian. They are also precisely the algebras L(E) for which every finitely generated left (equivalently, right) L(E)-module is artinian. In our second main result, we give necessary and sufficient conditions for every corner of L(E) to be left (equivalently, right) noetherian. They also turn out to be precisely those algebras L(E) for which every finitely generated left(equivalently, right) L(E)-module is noetherian. In both situations, isomorphisms between these algebras and appropriate direct sums of matrix rings over K or K[x, x−1] are provided. Likewise, in both situations, equivalent graph theoretic conditions on E are presented.
Resumo:
We prove a double commutant theorem for hereditary subalgebras of a large class of C*-algebras, partially resolving a problem posed by Pedersen[8]. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu proved a C*-algebraic double commutant theorem for separable subalgebras of the Calkin algebra. We prove a similar result for hereditary subalgebras which holds for arbitrary corona C*-algebras. (It is not clear how generally Voiculescu's double commutant theorem holds.)
Resumo:
Let A be a semiprime 2 and 3-torsion free non-commutative associative algebra. We show that the Lie algebra Der(A) of(associative) derivations of A is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of A. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra A with involution and the Lie algebra SDer(A) of involution preserving derivations of A
Resumo:
Aquest article analitza la situació dels dipòsits institucionals als EUA mitjançant una enquesta realitzada per la CNI a les seves institucions acadèmiques. Amb aquesta enquesta s'obtingué informació sobre el grau d'implementació dels dipòsits i la seva extensió, així com del tipus de materials. A més, va servir per conèixer l'opinió de les institucions sobre els dipòsits, i va quedar palès que la major part de les que no en posseeixen, tenen previst posar-ne un en funcionament, tot i que els preocupi el cost de manteniment. L'article també tracta la responsabilitat administrativa dels dipòsits, les polítiques que els gestionen, la possibilitat de compartir dipòsits entre institucions i la procedència dels materials que contenen.
Resumo:
We extend the theory of Quillen adjunctions by combining ideas of homotopical algebra and of enriched category theory. Our results describe how the formulas for homotopy colimits of Bousfield and Kan arise from general formulas describing the derived functor of the weighted colimit functor.
Resumo:
In a recent paper Iyama and Yoshino consider two interesting examples of isolated singularities over which it is possible to classify the indecomposable maximal Cohen-Macaulay modules in terms of linear algebra data. In this paper we present two new approaches to these examples. In the first approach we give a relation with cluster categories. In the second approach we use Orlov's result on the graded singularity category. We obtain some new results on the singularity category of isolated singularities which may be interesting in their own right.
Resumo:
We show that H-spaces with finitely generated cohomology, as an algebra or as an algebra over the Steenrod algebra, have homotopy exponents at all primes. This provides a positive answer to a question of Stanley.
Resumo:
We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical localizations preserve ring spectra (in the strict sense, not only up to homotopy), modules over ring spectra, and algebras over commutative ring spectra, as well as ring maps, module maps, and algebra maps. It is principally the treatment of module spectra and their maps that led us to the use of coloured operads (also called enriched multicategories) in this context.