944 resultados para Charge-transfer salts


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Redox-active probes are designed and prepared for use in DNA-mediated electron transfer studies. These probes consist of ruthenium(II) complexes bound to nucleosides that possess metal-binding ligands. Low- and high-potential oxidants are synthesized from these modified nucleosides and display reversible one-electron electrochemical behavior. The ruthenium-modified nucleosides exhibit distinct charge-transfer transitions in the visible region that resemble those of appropriate model complexes. Resonance Raman and time-resolved emission spectroscopy are used to characterize the nature of these transitions.

The site-specific incorporation of these redox-active probes into oligonucleotides is explored using post-synthetic modification and solid-phase synthetic methods. The preparation of the metal-binding nucleosides, their incorporation into oligonucleotides, and characterization of the resulting oligonucleotides is described. Because the insertion of these probes into modified oligonucleotides using post-synthetic modification is unsuccessful, solid-phase synthetic methods are explored. These efforts lead to the first report of 3'-metallated oligonucleotides prepared completely by automated solid-phase synthesis. Preliminary efforts to prepare a bis-metallated oligonucleotide by automated synthesis are described.

The electrochemical, absorption, and emissive features of the ruthenium-modified oligonucleotides are unchanged from those of the precursor metallonucleoside. The absence of any change in these properties upon incorporation into oligonucleotides and subsequent hybridization suggests that the incorporated ruthenium(II) complex is a valuable probe for DNA-mediated electron transfer studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The functionalization of silicon surfaces with molecular catalysts for proton reduction is an important part of the development of a solar-powered, water-splitting device for solar fuel formation. The covalent attachment of these catalysts to silicon without damaging the underlying electronic properties of silicon that make it a good photocathode has proven difficult. We report the formation of mixed monolayer-functionalized surfaces that incor- porate both methyl and vinylferrocenyl or vinylbipyridyl (vbpy) moieties. The silicon was functionalized using reaction conditions analogous to those of hydrosilylation, but instead of a H-terminated Si surface, a chlorine-terminated Si precursor surface was used to produce the linked vinyl-modified functional group. The functionalized surfaces were characterized by time-resolved photoconductivity decay, X-ray photoelectron spectroscopy (XPS), electro- chemical, and photoelectrochemical measurements. The functionalized Si surfaces were well passivated, exhibited high surface coverage and few remaining reactive Si atop sites, had a very low surface recombination velocity, and displayed little initial surface oxidation. The surfaces were stable toward atmospheric and electrochemical oxidation. The surface coverage of ferrocene or bipyridine was controllably varied from 0 up to 30% of a monolayer without loss of the underlying electronic properties of the silicon. Interfacial charge transfer to the attached ferrocene group was relatively rapid, and a photovoltage of 0.4 V was generated upon illumination of functionalized n-type silicon surfaces in CH3CN. The immobilized bipyridine ligands bound transition metal ions, and thus enabled the assembly of metal complexes on the silicon surface. XPS studies demonstrated that [Cp∗Rh(vbpy)Cl]Cl, [Cp∗Ir(vbpy)Cl]Cl, and Ru(acac)2vbpy were assembled on the surface. For the surface prepared with iridium, x-ray absorption spectroscopy at the Ir LIII edge showed an edge energy and post-edge features virtually identical to a powder sample of [Cp∗Ir(bipy)Cl]Cl (bipy is 2,2 ́-bipyridyl). Electrochemical studies on these surfaces confirmed that the assembled complexes were electrochemically active.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The subject of this thesis is electronic coupling in donor-bridge-acceptor systems. In Chapter 2, ET properties of cyanide-bridged dinuclear ruthenium complexes were investigated. The strong interaction between the mixed-valent ruthenium centers leads to intense metal-to-metal charge transfer bands (MMCT). Hush analysis of the MMCT absorption bands yields the electronic-coupling strength between the metal centers (H_(AB)) and the total reorganization energy (λ). Comparison of ET kinetics to calculated rates shows that classical ET models fail to account for the observed kinetics and nuclear tunneling must be considered.

In Chapter 3, ET rates were measured in four ruthenium-modified highpotential iron-sulfur proteins (HiPIP), which were modified at position His50, His81, His42 and His18, respectively. ET kinetics for the His50 and His81 mutants are a factor of 300 different, while the donor-acceptor separation is nearly identical. PATHWAY calculations corroborate these measurements and highlight the importance of structural detail of the intervening protein matrix.

In Chapter 4, the distance dependence of ET through water bridges was measured. Photoinduced ET measurements in aqueous glasses at 77 K show that water is a poor medium for ET. Luminescence decay and quantum yield data were analyzed in the context of a quenching model that accounts for the exponential distance dependence of ET, the distance distribution of donors and acceptors embedded in the glass and the excluded volumes generated by the finite sizes of the donors and acceptors.

In Chapter 5, the pH-dependent excited state dynamics of ruthenium-modified amino acids were measured. The [Ru(bpy)_(3)] ^(2+) chromophore was linked to amino acids via an amide linkage. Protonation of the amide oxygen effectively quenches the excited state. In addition. time-resolved and steady-state luminescence data reveal that nonradiative rates are very sensitive to the protonation state and the structure of the amino acid moiety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I. PREAMBLE AND SCOPE

Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.

II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS

Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.

Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.

A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.

III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa

An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.

The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PART I

The energy spectrum of heavily-doped molecular crystals was treated in the Green’s function formulation. The mixed crystal Green’s function was obtained by averaging over all possible impurity distributions. The resulting Green’s function, which takes the form of an infinite perturbation expansion, was further approximated by a closed form suitable for numerical calculations. The density-of-states functions and optical spectra for binary mixtures of normal naphthalene and deuterated naphthalene were calculated using the pure crystal density-of-state functions. The results showed that when the trap depth is large, two separate energy bands persist, but when the trap depth is small only a single band exists. Furthermore, in the former case it was found that the intensities of the outer Davydov bands are enhanced whereas the inner bands are weakened. Comparisons with previous theoretical calculations and experimental results are also made.

PART II

The energy states and optical spectra of heavily-doped mixed crystals are investigated. Studies are made for the following binary systems: (1) naphthalene-h8 and d8, (2) naphthalene--h8 and αd4, and (3) naphthalene--h8 and βd1, corresponding to strong, medium and weak perturbations. In addition to ordinary absorption spectra at 4˚K, band-to-band transitions at both 4˚K and 77˚K are also analyzed with emphasis on their relations to cooperative excitation and overall density-of-states functions for mixed crystals. It is found that the theoretical calculations presented in a previous paper agree generally with experiments except for cluster states observed in system (1) at lower guest concentrations. These features are discussed semi-quantitatively. As to the intermolecular interaction parameters, it is found that experimental results compare favorably with calculations based on experimental density-of-states functions but not with those based on octopole interactions or charge-transfer interactions. Previous experimental results of Sheka and the theoretical model of Broude and Rashba are also compared with present investigations.

PART III

The phosphorescence, fluorescence and absorption spectra of pyrazine-h4 and d4 have been obtained at 4˚K in a benzene matrix. For comparison, those of the isotopically mixed crystal pyrazine-h4 in d4 were also taken. All these spectra show extremely sharp and well-resolved lines and reveal detailed vibronic structure.

The analysis of the weak fluorescence spectrum resolves the long-disputed question of whether one or two transitions are involved in the near-ultraviolet absorption of pyrazine. The “mirror-image relationship” between absorption and emission shows that the lowest singlet state is an allowed transition, properly designated as 1B3u1A1g. The forbidden component 1B2g, predicted by both “exciton” and MO theories to be below the allowed component, must lie higher. Its exact location still remains uncertain.

The phosphorescence spectrum when compared with the excitation phosphorescence spectra, indicates that the lowest triplet state is also symmetry allowed, showing a strong 0-0 band and a “mirror-image relationship” between absorption and emission. In accordance with previous work, the triplet state is designated as 3B3u.

The vibronic structure of the phosphorescence spectrum is very complicated. Previous work on the analysis of this spectrum all concluded that a long progression of v6a exists. Under the high resolution attainable in our work, the supposed v6a progression proves to have a composite triplet structure, starting from the second member of the progression. Not only is the v9a hydrogen-bending mode present as shown by the appearance of the C-D bending mode in the d4 spectrum, but a band of 1207 cm-1 in the pyrazine in benzene system and 1231 cm-1 in the mixed crystal system is also observed. This band is assigned as 2v6b and of a1g symmetry. Its anonymously strong intensity in the phosphorescence spectrum is interpreted as due to the Fermi resonance with the 2v6a and v9a band.

To help resolve the present controversy over the crystal phosphorescence spectrum of pyrazine, detailed vibrational analyses of the emission spectra were made. The fluorescence spectrum has essentially the same vibronic structure as the phosphorescence spectrum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I.

Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.

Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.

Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.

II.

Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,

L = Qƭ(CH2)3As(CH3)2]3 or

P [hexagon - Q'CH3] , Q = P, As,

Q’=S, Se).

The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.

The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A11E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.

An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelenghts, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transport band model. The deviation is related to the coexistance of electrons and holes in photorefraction, and charge-transfer process including electrons and hole has been proposed. The electron and hole contributions to photo-excitation coefficient S of the Fe centre on the wavelength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quantitative study has been performed on the stability of GaAs surfaces in a 0.10 M K2Se-0.01 M K2Se2 aqueous solution. In this electrolyte, n-type GaAs electrodes displayed significant photocorrosion in competition with faradaic charge transfer to Se2-. Chemisorption of group VIIIB metal ions onto the GaAs surfaces yielded improved current-voltage behavior of the GaAs photoanodes, and also resulted in a significant reduction in photocorrosion. This behavior implies that the chemisorbed metal ions act to increase the rate of hole transfer to the Se2- species. Related experiments on n-GaAs, pGaAs, and Sn-doped In2O3 electrodes in Te2-/- aqueous solutions have also been performed.

The majority carrier (electrons) transfer rate constant at a highly doped n+-Si/Co(Cp)2Cl-methanol junction has been measured directly using the chronoamperometry electrochemical technique. The reduction reaction rate of Co(Cp)2+ was 0.03 cm-s-1 at the Si electrode, and was more than 100 times slower than at a hanging mercury electrode. The slower rate was attributed to the smaller optical and static dielectric constants, and the lower density of electrons of the semiconductor. The experimental results were compared to the Marcus theory of charge transfer.

The unique properties of high purity Si/liquid junctions have been investigated under illumination conditions in which the photogenerated carrier concentration exceeds the dopant concentration. Under these high injection conditions, negligible electric fields exist at the semiconductor/liquid interface, and carrier motion is driven by diffusion. Studies of the current-voltage properties of the Si in methanol solutions containing various redox couples suggested that high efficiency photoelectrochemical cells could be established through selective collection of carriers at the semiconductor/liquid junction. The quasi-Fermi levels of electrons and holes were measured directly against the solution potential. Steady-state and transient photovoltage measurements, and theoretical modeliug of the carrier transport, generation, and recombination dynamics indicated that the quasi-Fermi levels were flat across the semiconductor sample. The recombination velocities at the Si/liquid junctions have also been measured, and were shown to vary with the solution potential following the Shockley-Read-Hall theory on recombination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two novel symmetrical charge transfer fluorene derivatives (abbreviated as BCZF and BVCZF) with carbazole end-group as the donor moieties have been synthesized. Three-photon absorption cross-sections of these two compounds have been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 140 x 10(-78) and 400 x 10(-78) cm(6) s(2) for BCZF and BVCZF, respectively. The geometries, electronic structures and electronic spectra of these two compounds are systematically studied by AM1 and ZINDO/S methods. On the basis of correct UV-vis spectra, the influence of different molecular structure on three-photon absorption cross-sections is discussed micromechanically. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel symmetrical charge transfer fluorene-based compound 2,7-bis (4-methoxystyryl)-9, 9-bis (2-ethylhexyl)-9H-fluorene (abbreviated as BMOSF) was synthesized and its nonlinear absorption was investigated using two different laser systems: a 140-fs, 800-nm Ti:sapphire laser operating at 1-kHz repetition rate and a 38-ps, 1064-nm Nd:YAG pulsed laser operating at 10-Hz repetition rate, respectively. Unique nonlinear absorption properties in this new compound were observed that rise from multiphoton absorption. The nonlinear absorption coefficients were measured to be 6.02

Relevância:

80.00% 80.00%

Publicador:

Resumo:

首次合成了7,7,8,8-四氰基对苯醌二甲烷的脂类衍生物:TCNQ(C2H4COOR)2(R=CH3,C2H5,C3H7)及其铜电子转移复合物。通过元素分析确定这些化合物的组成,对这些化合成物在4000~400cm^-1范围内的主要红外光谱吸收峰进行了归属,并讨论了取代基对TCNQ类衍生物红外光谱的影响及其规律。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses (LBG), which are capable of splitting a visible photon absorbed by Tm3+ or Pr3+ ions into two near-infrared photons. The results indicate that Pr3+-Yb3+ is a more efficient ion couple than Tm3+-Yb3+ in terms of cooperative downconversion. We have obtained a highest quantum yield of 165% and 138% for Pr3+-Yb3+ and Tm3+-Yb3+ codoped LBG glasses under 468 nm excitation, respectively. However, ultraviolet light excitation to the charge transfer band of Yb3+ does not result in quantum splitting as rapid relaxation from the charge transfer band to 4f(13) levels of Yb3+ dominates. (C) 2008 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O-2-to Nb5+ can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix. (C) 2008 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yb3Al5O12 single crystal has been grown by Czochralski (CZ) method. The absorption spectrum was investigated at low temperature and the electronic energy levels for F-2(5/2) multiplet of Yb3+ in YbAG was proposed. The up-conversion emission of the crystal under 940 nm diode pumping and the X-ray excited luminescence (XEL) features of the crystal were also studied. (c) 2005 Elsevier B.V. All rights reserved.