895 resultados para COLD-SMOKED SALMON
Resumo:
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reductionas dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the remineralization of particulate organic matter. The highest pore water REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shalenormalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.
Resumo:
Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities associated with tectonic faults where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. During the cruise YK06-05 in 2006 with the RV Yokosuka to the Japan Trench, we investigated a clam colony inhabited by Abyssogena phaseoliformis (former known as Calyptogena phaseoliformis) and Isorropodon fossajaponicum (former known as Calyptogena fossajaponica). The targeted sampling and precise positioning of the in situ instruments were achieved with the manned research submersible Shinkai 6500 (JAMSTEC, Nankoku, Kochi, Japan). Sampling was first performed close to the rim of the JTC colony and then at the center. Immediately after sample recovery onboard, the sediment core was sub-sampled for ex situ rate measurements or preserved for later analyses. In sediment of the clam colony, low sulfate reduction (SR) rates (max. 128 nmol ml**-1 d**-1) were coupled to the anaerobic oxidation of methane (AOM). They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity was low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench.
Resumo:
It has been hypothesized that endolithic photo-autotrophs inside the skeleton of cold-water corals may have a mutualistic relationship with the coral host positively affecting coral calcification. This study investigated the effect of endolithic photo-autotrophs on the apical septal extension of the cold-water coral Desmophyllum dianthus at Fjord Comau, southern Chile (42.41° - 42.15°S, 72.5°W). The fluorescent staining agent calcein was used to document the linear apical extension of septae for a period of one and a half years between 2006 and 2007. The results showed a severe reduction in extension rates associated with the presence of endolithic photo-autotrophs. Infested individuals grew about half as fast as non-infested polyps with a median value of 1.18 µm/day compared to 2.76 µm/day. Contrary to the initial hypothesis, these results point toward a parasitic relationship between D. dianthus and its endolithic photo-autotrophs potentially impairing coral fitness. However, further data on physiological parameters and other aspects of the calcification process are necessary to confirm these findings.
Resumo:
The dataset contains raw data (quantification cycle) for a study which determined the most suitable hepatic reference genes for normalisation of qPCR data orginating from juvenile Atlantic salmon (14 days) exposed to 14 and 22 degrees C. These results will be useful for anyone wanting to study the effects of climate change/elevated temperature on reproductive physiology of fish (and perhaphs other vertebrates).
Resumo:
In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and 11 ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North AtIantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.
Resumo:
The influence of microhabitat type on the diversity and community structure of the harpacticoid copepod fauna associated with a cold-water coral degradation zone was investigated in the Porcupine Seabight (North-East Atlantic). Three substrate types were distinguished: dead fragments of the cold-water coral Lophelia pertusa, skeletons of the glass sponge Aphrocallistes bocagei and the underlying sediment. At the family level, it appears that coral fragments and underlying sediment do not harbour distinctly diVerent assemblages, with Ectinosomatidae, Ameiridae, Pseudotachidiidae, Argestidae and Miraciidae as most abundant. Conclusions on assemblage structure and diversity of the sponge skeletons are limited as only two samples were available. Similarity analysis at species level showed a strong variation in the sediment samples, which did not harbour a distinctly different assemblage in opposition to the coral and sponge samples. Several factors (sediment infill on the hard substrates, mobility of the copepods, limited sample sizes) are proposed to explain this apparent lack of a distinct difference between the microhabitats. Coral fragments and sediment were both characterised by high species diversity and low species dominance, which might indicate that copepod diversity is not substantially influenced by hydrodynamic stress. The additive partitioning of species diversity showed that by adding locations species richness was greatly enhanced. The harpacticoid community in the cold-water coral degradation zone is highly diverse and includes 157 species, 62 genera and 19 families. Information from neighbouring soft-bottom regions is necessary to assess whether total species diversity is increased by the presence of these complex habitatproviding substrates.