921 resultados para Built-in test
Resumo:
Motivated by accurate average-case analysis, MOdular Quantitative Analysis (MOQA) is developed at the Centre for Efficiency Oriented Languages (CEOL). In essence, MOQA allows the programmer to determine the average running time of a broad class of programmes directly from the code in a (semi-)automated way. The MOQA approach has the property of randomness preservation which means that applying any operation to a random structure, results in an output isomorphic to one or more random structures, which is key to systematic timing. Based on original MOQA research, we discuss the design and implementation of a new domain specific scripting language based on randomness preserving operations and random structures. It is designed to facilitate compositional timing by systematically tracking the distributions of inputs and outputs. The notion of a labelled partial order (LPO) is the basic data type in the language. The programmer uses built-in MOQA operations together with restricted control flow statements to design MOQA programs. This MOQA language is formally specified both syntactically and semantically in this thesis. A practical language interpreter implementation is provided and discussed. By analysing new algorithms and data restructuring operations, we demonstrate the wide applicability of the MOQA approach. Also we extend MOQA theory to a number of other domains besides average-case analysis. We show the strong connection between MOQA and parallel computing, reversible computing and data entropy analysis.
Resumo:
Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).
Resumo:
Widespread adoption of lead-free materials and processing for printed circuit board (PCB) assembly has raised reliability concerns regarding surface insulation resistance (SIR) degradation and electrochemical migration (ECM). As PCB conductor spacings decrease, electronic products become more susceptible to these failures mechanisms, especially in the presence of surface contamination and flux residues which might remain after no-clean processing. Moreover, the probability of failure due to SIR degradation and ECM is affected by the interaction between physical factors (such as temperature, relative humidity, electric field) and chemical factors (such as solder alloy, substrate material, no-clean processing). Current industry standards for assessing SIR reliability are designed to serve as short-term qualification tests, typically lasting 72 to 168 hours, and do not provide a prediction of reliability in long-term applications. The risk of electrochemical migration with lead-free assemblies has not been adequately investigated. Furthermore, the mechanism of electrochemical migration is not completely understood. For example, the role of path formation has not been discussed in previous studies. Another issue is that there are very few studies on development of rapid assessment methodologies for characterizing materials such as solder flux with respect to their potential for promoting ECM. In this dissertation, the following research accomplishments are described: 1). Long-term temp-humidity-bias (THB) testing over 8,000 hours assessing the reliability of printed circuit boards processed with a variety of lead-free solder pastes, solder pad finishes, and substrates. 2). Identification of silver migration from Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder, which is a completely new finding compared with previous research. 3). Established the role of path formation as a step in the ECM process, and provided clarification of the sequence of individual steps in the mechanism of ECM: path formation, electrodeposition, ion transport, electrodeposition, and filament formation. 4). Developed appropriate accelerated testing conditions for assessing the no-clean processed PCBs' susceptibility to ECM: a). Conductor spacings in test structures should be reduced in order to reflect the trend of higher density electronics and the effect of path formation, independent of electric field, on the time-to-failure. b). THB testing temperatures should be modified according to the material present on the PCB, since testing at 85oC can cause the evaporation of weak organic acids (WOAs) in the flux residues, leading one to underestimate the risk of ECM. 5). Correlated temp-humidity-bias testing with ion chromatography analysis and potentiostat measurement to develop an efficient and effective assessment methodology to characterize the effect of no-clean processing on ECM.
Resumo:
Historical Annapolis Foundation (HAF) conducted terrestrial archaeological investigations at site 18AP21 in the city of Annapolis, Maryland. Excavations were carried out at this National Register site ostensibly as a Phase II project to evaluate the site and assess the need for further work. The site is at 99 Main Street in the center of downtown Annapolis, near the Annapolis waterfront. The project was carried out as part of the advanced work for the Annapolis History Center project, to be built in the adjoining buildings of 99 Main and 196 Green Streets. The buildings are the property of the Historic Annapolis Foundation and located in Maryland Research Unit 7. The excavations were undertaken by HAF, and funded by HAFF. The work was conducted for HAF and MHT, who holds an archaeological easement on the property. This preliminary phase of work included stratigraphic excavation of two testpit units. These two units revealed that the site of the existing 99 Main Street building was the location of three previous constructions. The current building at 99 Main Street, built in 1791, was preceded by an earlier brick dwelling, evidenced by a stout pier of bricks, which was attached to a wooden-sided structure that stood on a foundation of brick and stone. Ceramics indicate that these buildings date to the early-middle of the 18th century. A third structure of post-in-ground construction, evidenced by recovery of burned posts and wood fragments, likely existed prior to these, but evidence was scant. These excavations reveal that the site of 18AP21 holds potential for understanding Annapolis's early cultural developments, especially in the area of initial settlement and the origins of waterfront commerce. The assemblage of artifacts recovered includes a broad sample of common 18th century pottery such as creamware and Chinese export porcelain, and also includes some early colonial types such as tin-glazed earthenware and various red-bodied slipwares. The excavations do not provide conclusive evidence of the construction sequence. Consultation with MHT representatives indicates that further work at the site will likely be needed before modifications to the floor of the building can progress.
Resumo:
The Sands House (18AP47) is located at 130 Prince George Street in Annapolis, Maryland. Historical documentation notes that a house stood on the property at least by 1706 (Liber W.T. 2, 1706: 402). Archaeological evidence indicates that an earthfast structure was built in about 1700. This building has been modified and renovated extensively. In the 1720's a fieldstone foundation was put under the house and in the late 18th century an addition was made to the west side of the house. In 1904 an addition was put on the rear of the house and the entire structure was raised. Archaeological excavations were conducted inside and outside the Sands House in 1988 by Archaeology in Annapolis. This work was sponsored by Historic Annapolis Foundation and the University of Maryland, College Park. This volume is the final site report for the archaeological investigations at the Sands House.
Resumo:
Kurzel(2004) points out that researchers in e-learning and educational technologists, in a quest to provide improved Learning Environments (LE) for students are focusing on personalising the experience through a Learning Management System (LMS) that attempts to tailor the LE to the individual (see amongst others Eklund & Brusilovsky, 1998; Kurzel, Slay, & Hagenus, 2003; Martinez,2000; Sampson, Karagiannidis, & Kinshuk, 2002; Voigt & Swatman; 2003). According to Kurzel (2004) this tailoring can have an impact on content and how it’s accessed; the media forms used; method of instruction employed and the learning styles supported. This project is aiming to move personalisation forward to the next generation, by tackling the issue of Personalised e-Learning platforms as pre-requisites for building and generating individualised learning solutions. The proposed development is to create an e-learning platform with personalisation built-in. This personalisation is proposed to be set from different levels of within the system starting from being guided by the information that the user inputs into the system down to the lower level of being set using information inferred by the system’s processing engine. This paper will discuss some of our early work and ideas.
Resumo:
With emergence of "Semantic Web" there has been much discussion about the impact of technologies such as XML and RDF on the way we use the Web for developing e-learning applications and perhaps more importantly on how we can personalise these applications. Personalisation of e-learning is viewed by many authors (see amongst others Eklund & Brusilovsky, 1998; Kurzel, Slay, & Hagenus, 2003; Martinez, 2000; Sampson, Karagiannidis, & Kinshuk, 2002; Voigt & Swatman, 2003) as the key challenge for the learning technologists. According to Kurzel (2004) the tailoring of e-learning applications can have an impact on content and how it's accesses; the media forms used; method of instruction employed and the learning styles supported. This paper will report on a research project currently underway at the eCentre in University of Greenwich which is exploring different approaches and methodologies to create an e-learning platform with personalisation built-in. This personalisation is proposed to be set from different levels of within the system starting from being guided by the information that the user inputs into the system down to the lower level of being set using information inferred by the system's processing engine.
Resumo:
An Internet based supply chain simulation game (ISCS) is introduced and demonstrated in this paper. Different from other games and extended from the Beer Game, a comprehensive set of supply chain (SC) management strategies can be tested in the game, and these strategies can be evaluated and appraised based on the built-in Management Information System (MIS). The key functionalities of ISCS are designed to increase players SC awareness, facilitate understanding on various SC strategies and challenges, foster collaboration between partners, and improve problem solving skills. It is concluded that an ISCS can be used as an efficient and effective teaching tool as well as a research tool in operations research and management science. Problems and obstacles have been observed while engaging in the SC business scenario game. The actions proposed and implemented to solve these problems have resulted in improved SC performance.
Resumo:
This memoir recalls the instruments in the Electron Microscope Unit and the staff, students and visitors who used them. Accessory equipment is also described because much of it was innovative and built in the laboratory, also, much of the science would not have been possible without it. This publication includes 33 figures, 4 plates and 7 appendices. The appendices record that 54 MBA staff and 196 students and visitors have used the microscopes and that 413 titles have been published (to the end of 2006).
Resumo:
An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.
Resumo:
En este trabajo se analiza la iconografía y se concreta la datación y el origen del conjunto de treinta y cinco azulejos nazaríes decorados en cobalto y reflejo metálico procedentes de la que hemos identificado como capilla de Santiago en la antigua iglesia de San Bartolomé, erigida en la Judería de Córdoba tras el asalto de 1391. Se plantea, asimismo, que Diego Fernández Abencaçin, judeoconverso y alfaqueque mayor del rey y presumiblemente el comitente de la capilla funeraria, fue quien adquirió los azulejos. Hasta ahora, la única interpretación de las escenas figuradas que los decoran apuntaba a una supuesta representación de alegorías de los sentidos; no obstante, la comparación con ejemplos paralelos, el estudio de la indumentaria de los personajes y el estilo nos lleva a identificarlas como materialización de los gustos y aficiones de las clases privilegiadas a comienzos del s. XV: el amor cortés, la caza, la fauna, los ministriles –especialmente el ciego acompañado de lazarillo–, las danzarinas y los catadores de vino; costumbres que el alfaqueque conoció durante sus estancias en la corte y en el desempeño de sus obligaciones, no sólo como redentor de cautivos cristianos, sino como trujimán y enviado del infante don Fernando –futuro rey de Aragón– durante la campaña de Antequera ante la corte nazarita de Granada y en las treguas posteriorment e firmadas con Yusuf III, lo que ha posibilitado concretar la datación de los azulejos entre 1410 y 1415.
Resumo:
Sustainability is now recognised as a key issue that must be addressed in the design, construction and lifelong maintenance of civil engineering structures. This paper briefly discusses the generic aspects of sustainability, but the main focus is its application to bridges. Motorway bridges built in the 1960s and 1970s had design lives of 120 years; many, however, were showing signs of deterioration after only 20–40 years. This led to much (ongoing) debate on the issue of initial versus full life-cycle costing. In order to address the highly complex issue of the sustainability of bridges, this paper considers the following specific areas that impinge on this important subject: the impact on sustainability of different forms of bridge construction and maintenance/repair/replacement strategies; the utilisation of innovative in situ testing equipment for assessing the long-term durability of concrete; the development of innovative structural designs for bridges that inherently have greatly extended lives at minimal, if any, additional cost.
Resumo:
The commonly used British Standard constant head triaxial permeability (BS) test, for permeability testing of fine grained soils, is known to have a relatively long test duration. Consequently, a reduction in the required time for permeability test provides potential cost savings, to the construction industry (specifically, for use during Construction Quality Control (CQA) of landfill mineral liners). The purpose of this article is to investigate and evaluate alternative short duration testing methods for the measurement of the permeability of fine grained soils.
As part of the investigation the feasibility of an existing method of short duration permeability test, known as the Accelerated Permeability (AP) test was assessed and compared with permeability measured using British Standard method (BS) and Ramp Accelerated Permeability (RAP). Four different fine grained materials, of a variety of physical properties were compacted at various moisture contents to produced analogous samples for testing using three the three different methodologies. Fabric analysis was carried out on specimens derived from post-test samples using Mercury Intrusion Porosimetry (MIP) and Scanning Electron Microscope (SEM) to assess the effects of testing methodology on soil structure. Results showed that AP testing in general under predicts permeability values derived from the BS test due to large changes in structure of the soil caused by AP test methodology, which is also validated using MIP and SEM observations. RAP testing, in general provides an improvement to the AP test but still under-predicts permeability values. The potential savings in test duration are shown to be relatively minimal for both the AP and RAP tests.
Resumo:
Abstract:
Background: An estimated 30-60% of older
adults fall every year and about 1% of falls result in a hip fracture. Hip fracture is a serious and growing problem, with a 3-10 fold rise in worldwide incidence predicted by 2050 (Gullberg, et al 1997). Hip protectors are underwear with built in protection for the greater trochanter. They are designed to prevent hip fractures by dispersing or absorbing the force of a fall. Trials
published to 2001 were broadly supportive of
the effectiveness of hip protectors, and this
was reflected in a Cochrane review in 2000.
However, earlier trials were methodologically
flawed and subsequent trials have not demonstrated effectiveness. The most recent Cochrane review describes only a marginal benefit (Parker et al, 2005).
Review and Discussion: This presentation
evaluates the current evidence for the use
of hip protectors and discusses the use of
that evidence by manufacturers, suppliers,
professional groups and guideline developers.
Interestingly, despite the limitations of the
evidence base, most advice has been broadly
supportive. Reasons for this are proposed
and discussed in the context of a critique of
evidence-based healthcare. protectors. However, the available evidence can be used in different ways and for different purposes by those with an interest in promoting
the use of hip protectors. A conservative
approach is warranted, where, if we cannot
demonstrate that hip protectors work, we
presume that they do not. This presentation will be of use to practitioners wanting to evaluate the evidence base for hip protectors (and other recommended interventions) on behalf of clients. It will also be of interest to policy makers who must assess the claims made for health care technologies as part of the decisionmaking process.
Recommended reading:
Gullberg B, Johnell O, Kanis JA (1997) Worldwide
projections for hip fracture. Osteoporos
Int. 7(5):407-13 .
Parker MJ, Gillespie WJ, Gillespie LD (2005) Hip
protectors for preventing hip fractures in older
people. The Cochrane Database of Systematic
Reviews Issue 3. Art. No.: CD001255.pub3. DOI:
10.1002/14651858.CD001255.pub3.
Resumo:
Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. Whereas there are approaches for robustness that rely largely on built-in redundancy, we adopt a responsive approach that is more akin to that of biological networks e.g. the brain. The general goal of self-healing distributed graphs is to maintain certain network properties while recovering from failure quickly and making bounded alterations locally. Several self-healing algorithms have been suggested in the recent literature [IPDPS'08, PODC'08, PODC'09, PODC'11]; they heal various network properties while fulfilling competing requirements such as having low degree increase while maintaining connectivity, expansion and low stretch of the network. In this work, we augment the previous algorithms by adding the notion of edge-preserving self-healing which requires the healing algorithm to not delete any edges originally present or adversarialy inserted. This reflects the cost of adding additional edges but more importantly it immediately follows that edge preservation helps maintain any subgraph induced property that is monotonic, in particular important properties such as graph and subgraph densities. Density is an important network property and in certain distributed networks, maintaining it preserves high connectivity among certain subgraphs and backbones. We introduce a general model of self-healing, and introduce xheal+, an edge-preserving version of xheal[PODC'11]. © 2012 IEEE.