775 resultados para Biaxial flexural strength
Resumo:
This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acidetched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha=0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). The application of NIP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.
Resumo:
Purpose: The study evaluates the behavior of different adhesive systems and resin cements in fiber post placement, with the intent to clarify the possible role of unfilled resin as a luting material for fiber posts. Materials and Methods: Two luting agents (Dual-Link and Unfilled Resin) for cementing fiber posts into root canals were applied either with All-Bond 2 or One-Step Plus, or without an adhesive system, and challenged with the push-out test. Slices of roots restored with posts were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under SEM. Results: Push-out strength was significantly influenced by the luting agent (p < 0.05), but not by the bonding strategy (p > 0.05). The best results were obtained in combination with Unfilled Resin with One-Step Plus. Dual-Link groups failed mainly cohesively within the cement, while Unfilled Resin demonstrated more adhesive fracture at the post interface. Conclusion: The results of this study support the hypothesis that adhesive unfilled resin application is essential for achieving high bond strength to radicular dentin.
Resumo:
Purpose To determine the bond strength to unground enamel of all in one adhesives in comparison with an etch and rinse system and to compare the reliability of microtensile and microshear methods in providing such measurements Materials and Methods The bonding procedure was performed on enamel of 64 extracted molars The tested all in one adhesives were Bond Force (Tokuyama), AdheSE One (Ivoclar Vivadent) and Xeno V (Dentsply) Prime&Bond NT (Dentsply) served as control Microtensile specimens were obtained from 4 teeth per group Twelve teeth per group were used for microshear testing Microtensile specimens that failed prior to testing were included in statistical calculations, they were assigned the lowest value measured in the respective group Failure modes were observed under light microscope and classified (cohesive within substrates, adhesive mixed) Statistically significant differences in bond strength were assessed among the adhesives within each testing method and between microshear and microtensile data for each adhesive Failure mode distributions were compared using the chi square test Results All in-one adhesives had similar microshear and microtensile bond strengths In both testing methods, the etch and rinse system achieved the strongest bond For all adhesives significantly higher bond strengths were measured with the microshear test In microtensile testing specimens bonded with the etch and rinse adhesive exhibited a significantly different distribution of failure modes The coefficients of variation were extremely high for microtensile bond strength data, particularly of all in one adhesives Conclusion The adhesive potential to intact enamel of recently introduced all in-one adhesives was inferior to that of an etch and rinse system When testing bond strength to enamel of all in one adhesives, microshear testing may be a more accurate method than microtensile
Resumo:
P>Aim To assess the push-out strength of Epiphany SE, Epiphany and Hybrid Root SEAL to the dentine walls of root canals. Methodology Sixty roots of canines were prepared and distributed to six groups (n = 10) according to the filling material: GI - Epiphany SE, GII - Epiphany primer and sealer, GIII - Epiphany primer, sealer and resinous solvent, GIV - Clearfil DC Bond and Epiphany sealer, GV - Clearfil, Epiphany sealer and solvent and GVI - Hybrid Root SEAL. Resilon cones were used in all groups. Roots were sectioned transversally to obtain three slices from each third. One slice was subjected to the push-out test (MPa), and results were analysed by anova and Tukey`s test (P < 0.05). The other two slices were prepared for scanning electron microscopy (SEM). Failure mode was also analysed. Results A statistically significant difference (P < 0.05) occurred between Hybrid Root SEAL (5.27 +/- 2.07) and the other materials, GI (0.40 +/- 0.23), GII (0.78 +/- 0.45), GIII (0.57 +/- 0.28), GIV (0.40 +/- 0.24) and GV (0.50 +/- 0.41), which did not differ significantly from each other (P > 0.05). Adhesive failures predominated in groups I, II, IV and V, whilst mixed and cohesive failures were the most frequent in groups III and VI, respectively. There were gaps in the adhesive interface of GI and GII, continuity areas of the filling material with dentine in GIV and GV and good adaptation of the interface of GVI. Conclusion Hybrid Root SEAL had greater push-out strength to root canal dentine than Epiphany SE and Epiphany. The use of primer, solvent and adhesive system did not influence the adhesion of Epiphany.
Resumo:
The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a `monoblock` effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey`s post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.
Resumo:
Introduction: This study evaluated the bond strength of translucent fiber posts to experimentally weakened radicular dentin restored with composite resin and polymerized with different light-exposure time. Methods: Roots of 60 maxillary incisors were used. Twenty-four hours after obturation, the filling materials of root canals were removed to a depth of 12 mm, and 4 groups were randomly formed. In 3 groups, root dentin was flared to produce a space between fiber post and canal walls. In the control group, the roots were not experimentally weakened. The flared roots were bulk restored with composite resin, which was light-activated through the translucent post for 40, 80, or 120 seconds. Posts were cemented, and after 24 hours, all roots were sectioned transversely in the coronal, middle, and apical regions, producing 1-mm-thick slices. Push-out test was performed, and failure modes were observed. Results The quantitative analysis showed significant statistical difference only among groups (P <.001). Comparing the weakened/restored groups, composite light-exposure time did not influence the results. Overall, adhesive failures occurred more frequently than other types of failures. Cohesive failures occurred only in the weakened/restored roots. Conclusions Intracanal root restoration with composite resin and translucent fiber posts provided similar or higher bond strength to dentin than the control group, regardless of the light-exposure time used for polymerization. (J Endod 2009;35:1034-1039)
Resumo:
This study evaluated in vitro the bond strength of Epiphany sealer prepared with resinous solvent of Epiphany system (Thinning resin) by using a push-out test. Forty maxillary canines were sectioned transversally below the cementoenamel junction to provide 4-mm-thick dentin disks that were centered in aluminum rings and embedded in acrylic resin. Root canals were prepared with tapered diamond bur. Intraradicular dentin was treated with 1% NaOCl for 30 minutes, 17% ethylenediaminetetraacetic acid for 5 minutes, and flushed with distilled water for 1 minute. The specimens were randomly distributed into 4 groups (n = 10) according to the filling material: GI, Epiphany without photoactivation; GII, Epiphany prepared with solvent without photoactivation; Gill, Epiphany followed by photoactivation; and GIV, Epiphany prepared with solvent followed by photoactivation. After the setting time, the specimens were submitted to the push-out test. The highest mean value (14.91 +/- 2.82 MPa) was obtained with Epiphany prepared with solvent followed by photoactivation (GIV), which was statistically different (P < .01) from the other groups. Groups I (8.15 +/- 2.47 MPa), II (9.46 +/- 2.38 MPa), and III (9.80 +/- 2.51 MPa) had inferior bond strength values and were statistically similar among themselves (P > .01). The resinous solvent of Epiphany system increased the bond strength of Epiphany sealer to dentin walls when followed by photoactivation. (J Endod 2009;35: 251-255)
Resumo:
Aim To evaluate the bond strength of AH Plus and Epiphany sealers to human root canal dentine irradiated with a 980 nm diode laser at different power and frequency parameters, using the push-out test. Methodology Sixty canine roots were sectioned below the cementoenamel junction to provide 4-mm-thick dentine discs that had their root canals prepared with a tapered bur and irrigated with sodium hypochlorite, ethylenediaminetetraacetic acid and distilled water. The specimens were assigned to five groups (n = 12): one control (no laser) and four experimental groups that were submitted to 980 nm diode laser irradiation at different power (1.5 and 3.0 W) and frequency (continuous wave and 100 Hz) parameters. Half of specimens in each group had their canals filled with AH Plus sealer and half with Epiphany. The push-out test was performed and data (MPa) were analysed statistically by ANOVA and Tukey`s test (P < 0.05). The specimens were split longitudinally and examined under SEM to assess the failure modes after sealer displacement. Results The specimens irradiated with the diode laser and filled with AH Plus had significantly higher bond strength values (8.69 +/- 2.44) than those irradiated and filled with Epiphany (3.28 +/- 1.58) and the nonirradiated controls (3.86 +/- 0.60). The specimens filled with Epiphany did not differ significantly to each other or to the control (1.75 +/- 0.69). There was a predominance of adhesive failures at Epiphany-dentine interface (77%) and mixed failures at AH Plus-dentine interface (67%). Conclusions The 980 nm diode laser irradiation of root canal dentine increased the bond strength of AH Plus sealer, but did not affect the adhesion of Epiphany sealer.
Resumo:
Objective: The aim of this study was to verify the influence of endodontic sealers on the bond strength of an adhesive system and a resin cement used for carbon posts cementation. Methods: Thirty extracted human premolars were instrumented and randomly divided into three groups according to the tested sealer: EndoFill, Sealapex, or EndoREZ. Specimens were stored at 37 degrees C. After 48 h, half of specimens were prepared to receive the post and the others after 7 days. The posts were cemented with Adper Single Bond/Rely X ARC and stored in distilled water at 37 degrees C for 7 days. After this period, the specimens were sectioned in three slices (coronal, middle, and apical). The push-out test was performed in a universal machine and the debonded area was examined in a stereomicroscope. Results: Data were submitted ANOVA and Tukey test (alpha = 0.05). The EndoFill showed lower bond strength than other sealers (p < 0.01). The EndoREZ sealer was statistically greater than other groups for coronal and middle portions and similar for apical portion (P > 0.05). Coronal and middle portions showed the best results for all groups, mainly when the canal preparation was performed after 48 h (p < 0.01). Mixed failure occurs with more frequency (55.6%) followed by failure in adhesive-dentin interface (34.4%) and adhesive-post interface (10.0%). Conclusion: The use of EndoREZ sealer promoted higher bond strength in root coronal and middle portions when carbon post was fixed with a resin cement. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Salivary contamination is one of the factors that can disturb the sealing process and interfere in the longevity of pit and fissure sealants. Erbium : yttrium-aluminum-garnet (Er : YAG) laser could influence the bond strength of enamel and increase the acid resistance. To evaluate the influence of Er : YAG laser on the shear bond strength of a sealant to a salivary contaminated enamel surface. Twenty-four third molars had the roots sectioned 2 mm coronal to the cementoenamel junction. The crowns were mesiodistally sectioned providing 48 halves that were embedded in polyester resin. Enamel was flattened and a 2-mm diameter bonding area was demarcated. Specimens were randomly assigned to two groups according to the superficial pretreatment-37% phosphoric acid (A) and Er : YAG laser (80 mJ/2 Hz) + phosphoric acid (L), which were subdivided into two groups (N = 12), without salivary contamination (C) and with salivary contamination (SC). To contaminate the specimens, 0.25 mL of human fresh saliva was applied for 20 seconds and then dried. Fluroshield sealant was applied in all specimens. After storage, shear bond strength of samples were tested in a universal testing machine. Means in MPa were: AC-14.61 (+/- 2.52); ASC-6.66 (+/- 2.34); LC-11.91 (+/- 1.34); and LSC-2.22 (+/- 0.66). Statistical analysis revealed that surfaces without salivary contamination and with acid treatment had the highest mean (p < 0.05). The group with salivary contamination treated by Er : YAG laser followed by phosphoric acid application presented the lowest bond values (p < 0.05). The phosphoric acid etching under dry condition yielded better bonding performance. Er : YAG laser was not able to increase the effectiveness of conventional acid etching of enamel in the bond of sealants in both dry and wet conditions. Under the conditions of this study, the conventional etching protocol (phosphoric acid without salivary contamination) is still preferable to laser-conditioning enamel surface prior to sealant application.
Resumo:
Background: It remains unclear as to whether or not dental bleaching affects the bond strength of dentin/resin restoration. Purpose: To evaluated the bond strength of adhesive systems to dentin submitted to bleaching with 38% hydrogen peroxide (HP) activated by LED-laser and to assess the adhesive/dentin interfaces by means of SEM. Study design: Sixty fragments of dentin (25 mm(2)) were included and divided into two groups: bleached and unbleached. HP was applied for 20 s and photoactivated for 45 s. Groups were subdivided according to the adhesive systems (n = 10): (1) two-steps conventional system (Adper Single Bond), (2) two-steps self-etching system (Clearfil standard error (SE) Bond), and (3) one-step self-etching system (Prompt L-Pop). The specimens received the Z250 resin and, after 24 h, were submitted to the bond strength test. Additional 30 dentin fragments (n = 5) received the same surface treatments and were prepared for SEM. Data were analyzed by ANOVA and Tukey`s test (alpha = 0.05). Results: There was significant strength reduction in bleached group when compared to unbleached group (P < 0.05). Higher bond strength was observed for Prompt. Single Bond and Clearfil presented the smallest values when used in bleached dentin. SEM analysis of the unbleached specimens revealed long tags and uniform hybrid layer for all adhesives. In bleached dentin, Single Bond provided open tubules and with few tags, Clearfil determined the absence of tags and hybrid layer, and Prompt promoted a regular hybrid layer with some tags. Conclusions: Prompt promoted higher shear bond strength, regardless of the bleaching treatment and allowed the formation of a regular and fine hybrid layer with less deep tags, when compared to Single Bond and Clearfil. Microsc. Res. Tech. 74:244-250, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Purpose: To evaluate the bond strength of glass fiber posts to intraradicular dentin when cemented with self-etching and self-adhesive resin cements. Materials and Methods: Forty-eight single-rooted human teeth were decoronated, endodontically treated, post-space prepared and divided into 8 groups (n = 6). The glass fiber posts used were: Exacto (EA) (Angelus) and everStick (ES) (StichTeck), which were cemented with two self-adhesive resin cements: BisCem (BIS) (Bisco) and Rely-X Unicem (UNI) (3M/ESPE), and two self-etching resin cements: Esthetic Cementing System NAC100 (NAC) (Kuraray) and Panavia-F (PAN) (Kuraray). Specimens were thermocycled between 5 degrees C and 55 degrees C for 1000 cycles and stored in water at 37 degrees C for 1 month. Four 1-mm-thick (in cross section) rods were obtained from the cervical region of the roots. Specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. Microtensile bond strength (mu TBS) data were analyzed with two-way ANOVA and Tukey`s tests. Results: Means (and SD) of mu TBS (MPa) were: EA/PAN: 10.3 (4.1), EA/NAC: 14 (5.1) EA/BIS: 16.4 (4.8), EA/UNI: 19.8 (5.1), ES/PAN: 25.9 (6.1), ES/NAC: 29.1 (7), ES/BIS: 28.9 (6), ES/UNI: 30.5 (6.6). ANOVA indicated significant differences among the groups (p < 0.001). Mean mu TBS values obtained with ES post were significantly higher than those obtained with EA (p < 0.001). For EA, Tukey`s test indicated that higher mu TBS means were obtained with the self-adhesive resin cements (BIS and UNI), which were statistically significantly different (p < 0.05) from values obtained with the self-etching resin cements (PAN and NAC). Different cements had no significant effects on the bond strength values of ES post (p > 0.05). mu TBS values obtained with ES post were significantly higher than those obtained with EA post irrespective of the resin cement used. Conclusion: everStick posts resulted in the highest mean mu TBS values with all cements. Self-adhesive cements performed well in terms of bond strength.
Resumo:
Purpose: The purpose of this study was to evaluate the thermocycling effects and shear bond strength of acrylic resin teeth to denture base resins. Materials and Methods: Three acrylic teeth (Biotone, Trilux, Ivoclar) were chosen for bonding to four denture base resins: microwave-polymerized (Acron MC), heat-polymerized (Lucitone 550 and QC-20), and light-polymerized (Versyo. bond). Twenty specimens were produced for each denture base/acrylic tooth combination and were divided into two groups (n = 10): without thermocycling (control groups) and thermocycled groups submitted to 5000 cycles between 4 and 60 degrees C. Shear strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 1 mm/min. Statistical analysis of the results was carried out with three-way ANOVA and Bonferroni`s multiple comparisons post hoc analysis for test groups (alpha = 0.05). Results: The shear bond strengths of Lucitone/Biotone, Lucitone/Trilux, and Versyo/Ivoclar specimens were significantly decreased by thermocycling, compared with the corresponding control groups (p < 0.05). The means of Acron/Ivoclar and Lucitone/Ivoclar specimens increased after thermocycling (p < 0.05). The highest mean shear bond strength value was observed with Lucitone/Biotone in the control group (14.54 MPa) and the lowest with QC-20/Trilux in the thermocycled group (3.69 MPa). Conclusion: Some acrylic tooth/denture base resin combinations can be more affected by thermocycling; effects vary based upon the materials used.
Resumo:
Bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The effect of methyl methacrylate (MMA) monomer on the bond strength of three types of denture base resins (Acron MC, Lucitone 550 and QC-20) to two types of acrylic teeth (Biotone and Trilux) was evaluated. Twenty specimens were produced for each denture base resin/acrylic tooth combination and were randomly divided into control (acrylic teeth received no surface treatment) and experimental groups (MMA was applied to the surface of the acrylic teeth for 180 s) and were submitted to shear tests (1 mm/mm). Data (MPa) were analyzed using three-way ANOVA/Student`s test (alpha = 0.05). MMA increased the bond strength of Lucitone denture base resins and decreased the bond strength of QC-20. No difference was detected for the bond strength of Acron MC base resin after treatment with MMA. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.