941 resultados para Automatic classification
Resumo:
In this paper we propose a novel family of kernels for multivariate time-series classification problems. Each time-series is approximated by a linear combination of piecewise polynomial functions in a Reproducing Kernel Hilbert Space by a novel kernel interpolation technique. Using the associated kernel function a large margin classification formulation is proposed which can discriminate between two classes. The formulation leads to kernels, between two multivariate time-series, which can be efficiently computed. The kernels have been successfully applied to writer independent handwritten character recognition.
Resumo:
This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.
Resumo:
Electricity generation is vital in developed countries to power the many mechanical and electrical devices that people require. Unfortunately electricity generation is costly. Though electricity can be generated it cannot be stored efficiently. Electricity generation is also difficult to manage because exact demand is unknown from one instant to the next. A number of services are required to manage fluctuations in electricity demand, and to protect the system when frequency falls too low. A current approach is called automatic under frequency load shedding (AUFLS). This article proposes new methods for optimising AUFLS in New Zealand’s power system. The core ideas were developed during the 2015 Maths and Industry Study Group (MISG) in Brisbane, Australia. The problem has been motivated by Transpower Limited, a company that manages New Zealand’s power system and transports bulk electricity from where it is generated to where it is needed. The approaches developed in this article can be used in electrical power systems anywhere in the world.
Resumo:
In this paper the approach for automatic road extraction for an urban region using structural, spectral and geometric characteristics of roads has been presented. Roads have been extracted based on two levels: Pre-processing and road extraction methods. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, parking lots, vegetation regions and other open spaces). The road segments are then extracted using Texture Progressive Analysis (TPA) and Normalized cut algorithm. The TPA technique uses binary segmentation based on three levels of texture statistical evaluation to extract road segments where as, Normalizedcut method for road extraction is a graph based method that generates optimal partition of road segments. The performance evaluation (quality measures) for road extraction using TPA and normalized cut method is compared. Thus the experimental result show that normalized cut method is efficient in extracting road segments in urban region from high resolution satellite image.
Resumo:
The aims of the thesis are (1) to present a systematic evaluation of generation and its relevance as a sociological concept, (2) to reflect on how generational consciousness, i.e. generation as an object of collective identification that has social significance, can emerge and take shape, (3) to analyze empirically the generational experiences and consciousness of one specific generation, namely Finnish baby boomers (b. 1945 1950). The thesis contributes to the discussion on the social (as distinct from its genealogical) meaning of the concept of generation, launched by Karl Mannheim s classic Das Problem der Generationen (1928), in which the central idea is that a certain group of people is bonded together by a shared experience and that this bonding can result in a distinct self-consciousness. The thesis is comprised of six original articles and an extensive summarizing chapter. In the empirical articles, the baby boomers are studied on the basis of nationally representative survey data (N = 2628) and narrative life-story interviews (N = 38). In the article that discusses the connection of generations and social movements, the analysis is based on the member survey of Attac Finland (N = 1096). Three main themes were clarified in the thesis. (1) In the social sense the concept of generation is a modern, problematic, and ultimately a political concept. It served the interests of the intellectuals who developed the concept in the early 20th century and provided them, as an alternative to the concept of social class, a new way of think about social change and progress. The concept of generation is always coupled with the concept of Zeitgeist or some other controversial way of defining what is essential, i.e. what creates generations, in a given culture. Thus generation is, as a product of definition and classification struggles, a contested concept. The concept also clearly implies elitist connotations; the idea of some kind of vanguard (the elite) that represents an entire generation by proclaiming itself as its spokesman automatically creates a counterpart, namely the others in the peer group who are thought to be represented (the masses). (2) Generational consciousness cannot emerge as a result of any kind of automatic process or endogenously; it must be made. There has to be somebody who represents the generation in order for that generation to exist in people s minds and as an object of identification; generational experiences and their meanings must be articulated. Hence, social generations are, in a fundamental manner, discursively constructed. The articulations of generational experiences (speeches, writings, manifests, labels etc.) can be called as the discursive dimension of social generations, and through this notion, how public discourse shapes people s generational consciousness can be seen. Another important element in the process is collective memory, as generational consciousness often takes form only retrospectively. (3) Finnish baby boomers are not a united or homogeneous generation but are divided into many smaller sections with specific generational experiences and consciousnesses. The content of the generational consciousness of the baby boomers is heavily politically charged. A salient dividing line inside the age group is formed by individual attitudes towards so-called 1960s radicalism. Identification with the 1960s generation functions today as a positive self-definition of a certain small leftist elite group, and the values and characteristics usually connected with the idea of the 1960s generation do not represent the whole age group. On the contrary, among some of the members of the baby boomers, the generational identification is still directed by the experience of how traditional values were disgraced in the 1960s. As objects of identification, the neutral term baby boomers and the charged 1960s generation are totally different things, and therefore they should not be used as synonyms. Although the significance of the group of the 1960s generation is often overestimated, they are however special with respect to generational consciousness because they have presented themselves as the voice of the entire generation. Their generational interpretations have spread through the media with the help of certain iconic images of the generation insomuch that 1960s radicalism has become an indirect generational experience for other parts of the baby boom cohort as well.
Resumo:
The introduction of casemix funding for Australian acute health care services has challenged Social Work to demonstrate clear reporting mechanisms, demonstrate effective practice and to justify interventions provided. The term 'casemix' is used to describe the mix and type of patients treated by a hospital or other health care services. There is wide acknowledgement that the procedure-based system of Diagnosis Related Groupings (DRGs) is grounded in a medical/illness perspective and is unsatisfactory in describing and predicting the activity of Social Work and other allied health professions in health care service delivery. The National Allied Health Casemix Committee was established in 1991 as the peak body to represent allied health professions in matters related to casemix classification. This Committee has pioneered a nationally consistent, patient-centred information system for allied health. This paper describes the classification systems and codes developed for Social Work, which includes a minimum data set, a classification hierarchy, the set of activity (input) codes and 'indicator for intervention' codes. The advantages and limitations of the system are also discussed.
Resumo:
The business value of information technology (IT) is realized through the continuous use of IT subsequent to users’ adoption. Understanding post-adoptive IT usage is useful in realizing potential IT business value. Most previous research on post-adoptive IT usage, however, dismisses the unintentional and unconscious aspects of usage behavior. This paper advances understanding of the unintentional, unconscious, and thereby automatic usage of IT features during the post-adoptive stage. Drawing from Social Psychology literature, we argue human behaviors can be triggered by environmental cues and directed by the person’s mental goals, thereby operating without a person’s consciousness and intentional will. On this basis, we theorize the role of a user’s innovativeness goal, as the desired state of an act to innovate, in directing the user’s unintentional, unconscious, and automatic post-adoptive IT feature usage behavior. To test the hypothesized mechanisms, a human experiment employing a priming technique, is described.
Resumo:
The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.
Resumo:
The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.
Resumo:
Evaluation of intermolecular interactions in terms of both experimental and theoretical charge density analyses has produced a unified picture with which to classify strong and weak hydrogen bonds, along with van der Waals interactions, into three regions.
Resumo:
Background:Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. Methodology/Principal Findings: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses.Conclusion/Significance: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.
Resumo:
This paper aims at evaluating the methods of multiclass support vector machines (SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.
Resumo:
Separation of printed text blocks from the non-text areas, containing signatures, handwritten text, logos and other such symbols, is a necessary first step for an OCR involving printed text recognition. In the present work, we compare the efficacy of some feature-classifier combinations to carry out this separation task. We have selected length-nomalized horizontal projection profile (HPP) as the starting point of such a separation task. This is with the assumption that the printed text blocks contain lines of text which generate HPP's with some regularity. Such an assumption is demonstrated to be valid. Our features are the HPP and its two transformed versions, namely, eigen and Fisher profiles. Four well known classifiers, namely, Nearest neighbor, Linear discriminant function, SVM's and artificial neural networks have been considered and efficiency of the combination of these classifiers with the above features is compared. A sequential floating feature selection technique has been adopted to enhance the efficiency of this separation task. The results give an average accuracy of about 96.
Resumo:
In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.