976 resultados para Atomic contacts
Resumo:
When highly charged ions are incident on a surface, part of their potential energy is emitted as characteristic radiation. The energies and yields of these characteristic x rays have been measured for a series of elements at the Tokyo electron-beam ion trap. These data have been used to develop a simple model of the relaxation of the hollow atoms which are formed as the ion approaches the surface, as well as a set of semiempirical scaling laws, which allow for the ready calculation of the K-shell x-ray spectrum which would be produced by an arbitrary slow bare or hydrogenlike ion on a surface. These semiempirical scaling laws can be used to assess the merit of highly charged ion fluorescence x-ray generation in a wide range of applications.
Resumo:
We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.
Resumo:
We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).
Resumo:
Using survey data from Catholics and Protestants in Northern Ireland (N = 428), the authors examined the effects of extended contact via different types of ingroup contacts (neighbors, work colleagues, friends, and family members) and tested whether closeness to ingroup contacts moderated the effects of extended contact on outgroup trust. Results demonstrated that extended contact effects varied as a function of the relationship to ingroup contacts, and that extended contact interacted with closeness ratings in predicting outgroup trust. Consistent with hypotheses, extended contacts via more intimate ingroup relationships (i.e., friends and family) were overall more strongly related to outgroup trust than extended contacts via less intimate ingroup relations (i.e., neighbors and work colleagues). Moreover, within each level of intimacy extended contact was related to outgroup trust only at high, and not at low, levels of rated closeness to ingroup contacts. The theoretical contributions, limitations and practical implications of these findings are discussed.
Resumo:
We investigate the influence of the autoionizing 3s3p6nl resonances on the fifth harmonic generated by 200–240 nm laser fields interacting with Ar. To determine the influence of a multielectron response we develop the capability within time-dependent R-matrix theory to determine the harmonic spectra generated. The fifth harmonic is affected by interference between the response of a 3s electron and the response of a 3p electron, as demonstrated by the asymmetric profiles in the harmonic yields as functions of wavelength.