855 resultados para Asynchronous iterative algorithms
Resumo:
J.A. Ferreira Neto, E.C. Santos Junior, U. Fra Paleo, D. Miranda Barros, and M.C.O. Moreira. 2011. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Cien. Inv. Agr. 38(2): 169-178. The objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot`s productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity.
Resumo:
We describe the canonical and microcanonical Monte Carlo algorithms for different systems that can be described by spin models. Sites of the lattice, chosen at random, interchange their spin values, provided they are different. The canonical ensemble is generated by performing exchanges according to the Metropolis prescription whereas in the microcanonical ensemble, exchanges are performed as long as the total energy remains constant. A systematic finite size analysis of intensive quantities and a comparison with results obtained from distinct ensembles are performed and the quality of results reveal that the present approach may be an useful tool for the study of phase transitions, specially first-order transitions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n vertices and m edges. To count the number of all the maximal cliques, without actually generating them, our algorithm requires O(log p) communication rounds with O(nm/p) local computation time. We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation, and to generate each one of the subsequent maximal cliques this algorithm requires O(log p) communication rounds with O(m/p) local computation. The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present an algorithm for this problem that uses O(log p) communication rounds with O(m/p) local computation for each maximal path. We also show that the presented algorithms can be extended to the CREW PRAM model.
Resumo:
For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A bipartite graph G = (V, W, E) is convex if there exists an ordering of the vertices of W such that, for each v. V, the neighbors of v are consecutive in W. We describe both a sequential and a BSP/CGM algorithm to find a maximum independent set in a convex bipartite graph. The sequential algorithm improves over the running time of the previously known algorithm and the BSP/CGM algorithm is a parallel version of the sequential one. The complexity of the algorithms does not depend on |W|.
Resumo:
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, we introduce a necessary sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Garciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.