962 resultados para Analysis, influence, comparison
Resumo:
A method has been developed to obtain quantitative information about grain size and shape from fractured surfaces of ceramic materials. One elaborated a routine to split intergranular and transgranular grains facets of ceramic fracture surfaces by digital image processing. A commercial ceramic (ALCOA A-16, Al2O3-1.5% of CrO) was used to test the proposed method. Microstructural measurements of grain shape and size taken from fracture surfaces have been compared through descriptive statistics of distributions, with the corresponding measurements from polished and etched surfaces. The agreement between results, with the expected bias on grain size values from fractures, obtained for both types of surfaces allowed to infer that this new technique can be used to extract the relevant microstructural information from fractured surfaces, thus minimising the time consuming steps of sample preparation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Sixty-three Paracoccidioides brasiliensis isolates obtained from three nine-banded armadillos (Dasypus novem-cinctus), one Amazonian armadillo's and 19 clinical isolates were compared by random amplified polymorphic DNA analysis with the primer OPG-19. The isolates were divided into three major clusters, I, II and III. Coincidences between human and armadillo isolates were observed in clusters I and II. Cluster III consisted only of armadillos' isolates. The results suggested that (I) humans may acquire P. brasiliensis infection by contact with armadillo's environment, (II) there may be P. brasiliensis genotypes peculiar to the animal, and (III) individual armadillos may be infected with P brasiliensis cells with different genotypes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although it has already been shown that enamel matrix derivative (Emdogain((R))) promotes periodontal regeneration in the treatment of intrabony periodontal defects, there is little information concerning its regenerative capacity in cases of delayed tooth replantation. To evaluate the alterations in the periodontal healing of replanted teeth after use of Emdogain((R)), the central incisors of 24 Wistar rats (Rattus norvegicus albinus) were extracted and left on the bench for 6 h. Thereafter, the dental papilla and the enamel organ of each tooth were sectioned for pulp removal by a retrograde way and the canal was irrigated with 1% sodium hypochlorite. The teeth were assigned to two groups:in group I, root surface was treated with 1% sodium hypochlorite for 10 min (changing the solution every 5 min), rinsed with saline for 10 min and immersed in 2% acidulated-phosphate sodium fluoride for 10 min; in group II, root surfaces were treated in the same way as described above, except for the application of Emdogain((R)) instead of sodium fluoride. The teeth were filled with calcium hydroxide (in group II right before Emdogain((R)) was applied) and replanted. All animals received antibiotic therapy. The rats were killed by anesthetic overdose 10 and 60 days after replantation. The pieces containing the replanted teeth were removed, fixated, decalcified and paraffin-embedded. Semi-serial 6-mu m-thick sections were obtained and stained with hematoxylin and eosin for histologic and histometric analyses. The use of 2% acidulated-phosphate sodium fluoride provided more areas of replacement resorption. The use of Emdogain((R)) resulted in more areas of ankylosis and was therefore not able to avoid dentoalveolar ankylosis. It may be concluded that neither 2% acidulated-phosphate sodium fluoride nor Emdogain((R)) were able to prevent root resorption in delayed tooth replantation in rats.
Resumo:
Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.
Resumo:
Purpose: The aim of this study was to evaluate quantitatively and qualitatively the influence of estrogen deficiency on autogenous bone block grafts in aged variectomized rats. Materials and Methods: Fifty 12-month-old female Wistar rats were used in the study. They were divided into 2 groups, an ovariectomized group and a sham-operated group. After 30 days the animals received autogenous block bone grafts on the angle of the mandible, harvested from the calvaria. The animals were euthanized at 7, 14, or 28 days postoperatively. Results: Histologic analysis showed that at 7 days postsurgery, the interface between graft and recipient site in the sham-operated group appeared filled by a granulation tissue with angiogenic activity, whereas the ovariectomized group still exhibited a blood clot and a granulation tissue in organization. on the 14th postoperative day, the interface in the shamoperated group was partially filled by newly formed bone establishing a union between the graft and the recipient site. The interface in the ovariectomized group was typically filled by granulation tissue with discrete osteogenic activity in most specimens. on the 28th postoperative day, the graft in the sham-operated group appeared histologically integrated to the mandible. However, the interface in the ovariectomized group appeared partially filled by newly formed bone, with areas of interposed connective tissue. The statistical analysis revealed that bone neoformation was significantly greater in the sham-operated group (57.41% at 14 days and 68.35 at 28 days) in comparison with the ovariectomized group (40.82% at 14 days and 53.09 at 28 days) at the 5% level. Conclusion: The estrogen depletion caused by the ovariectomy hindered the healing process of autogenous block bone grafts placed in the mandibles of aged rats.
Resumo:
The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and pen-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the Solid Works 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0 degrees), oblique (45 degrees), and lateral (90) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the pen-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).
Resumo:
The aim of this study was to evaluate the stress distribution of platform switching implants using a photoelastic method. Three models were constructed of the photoelastic resin PL-2, with a single implant and a screw-retained implant-supported prosthesis. These models were Model A, platform 5.0 mm/abutment 4.1 mm; Model B, platform 4.1 mm/abutment 4.1 mm; and Model C, platform 5.00 mm/abutment 5.00 mm. Axial and oblique (45 degrees) loads of 100 N were applied using a Universal Testing Machine (EMIC DL 3000). Images were photographed with a digital camera and visualized with software (AdobePhotoshop) to facilitate the qualitative analysis. The highest stress concentrations were observed at the apical third of the 3 models. With the oblique load, the highest stress concentrations were located at the implant apex, opposite the load application. Stress concentrations decreased in the cervical region of Model A (platform switching), and Models A (platform switching) and C (conventional/wide-diameter) displayed similar stress magnitudes. Finally, Model B (conventional/regular diameter) displayed the highest stress concentrations of the models tested.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to analyze the histometry of ligature-induced periodontitis in rats at different histological section depths. Sixteen male adult Wistar rats were randomly assigned to two groups: ligature and control. In the ligature group, rats received a sterile 4/0 silk ligature around the maxillary right 2nd molar. Thirty serial sections containing the 1st and 2nd molars, in which the coronal and root pulp, cementoenamel junction (CEJ) in the mesial side of the 2nd molar, interproximal alveolar bone and connective fiber attachment were clearly visible, were selected for histometric analysis. The histological sections were clustered in groups of 10 sections corresponding the buccal (B), central (C) and lingual (L) regions of the of periodontal tissue samples. The distance between the CEJ in the mesial side of the 2nd molar and the attached periodontal ligament fibers (CEJ-PL) as well as the distance between the CEJ and the alveolar bone crest (CEJ-BC) were determined. From CEJ-PL and CEJ-BC distances measured for each specimen, the measurements obtained in the B, L and C regions were recorded individually and together. Data were submitted to statistical analysis. Significant differences (p<0.001) were observed between the control and ligature groups regarding CEJ-PL (0.05 mm and 0.26 mm, respectively) and CEJ-BC (0.47 mm and 0.77 mm, respectively) measurements. Regarding the depth of the buccal, central and lingual planes, the means of CEJ-PL and CEJ-BC of both groups showed no statistically significant differences (p>0.05). In conclusion, the selection of 10 serial sections of the central region of periodontal tissue samples at any depth can be considered as representative for the evaluation of periodontal ligament fiber attachment and bone loss in ligature-induced periodontitis in rats.
Resumo:
Purpose: Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Materials and Methods: Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 pm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 pm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 pm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. Results: The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. Conclusions: The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:788-796
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The purpose of this study was to compare the dental movement that occurs during the processing of maxillary complete dentures with 3 different base thicknesses, using 2 investment methods, and microwave polymerization.Methods: A sample of 42 denture models was randomly divided into 6 groups (n = 7), with base thicknesses of 1.25, 2.50, and 3.75 mm and gypsum or silicone flask investment. Points were demarcated on the distal surface of the second molars and on the back of the gypsum cast at the alveolar ridge level to allow linear and angular measurement using AutoCAD software. The data were subjected to analysis of variance with double factor, Tukey test and Fisher (post hoc).Results: Angular analysis of the varying methods and their interactions generated a statistical difference (P = 0.023) when the magnitudes of molar inclination were compared. Tooth movement was greater for thin-based prostheses, 1.25 mm (-0.234), versus thick 3.75 mm (0.2395), with antagonistic behavior. Prosthesis investment with silicone (0.053) showed greater vertical change compared with the gypsum investment (0.032). There was a difference between the point of analysis, demonstrating that the changes were not symmetric.Conclusions: All groups evaluated showed change in the position of artificial teeth after processing. The complete denture with a thin base (1.25 mm) and silicone investment showed the worst results, whereas intermediate thickness (2.50 mm) was demonstrated to be ideal for the denture base.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)