962 resultados para Algebraic ANRs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Educação Matemática na Educação Pré-escolar e nos 1.º e 2.º Ciclos do Ensino Básico

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientador: Mestre, Gabriela Pinheiro

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a mechanically verified implementation of an algorithm for deciding the equivalence of Kleene algebra terms within the Coq proof assistant. The algorithm decides equivalence of two given regular expressions through an iterated process of testing the equivalence of their partial derivatives and does not require the construction of the corresponding automata. Recent theoretical and experimental research provides evidence that this method is, on average, more efficient than the classical methods based on automata. We present some performance tests, comparisons with similar approaches, and also introduce a generalization of the algorithm to decide the equivalence of terms of Kleene algebra with tests. The motivation for the work presented in this paper is that of using the libraries developed as trusted frameworks for carrying out certified program verification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphisms in IL28B were shown to affect clearance of hepatitis C virus (HCV) infection in genome-wide association (GWA) studies. Only a fraction of patients with chronic HCV infection develop liver fibrosis, a process that might also be affected by genetic factors. We performed a 2-stage GWA study of liver fibrosis progression related to HCV infection. We studied well-characterized HCV-infected patients of European descent who underwent liver biopsies before treatment. We defined various liver fibrosis phenotypes on the basis of METAVIR scores, with and without taking the duration of HCV infection into account. Our GWA analyses were conducted on a filtered primary cohort of 1161 patients using 780,650 single nucleotide polymorphisms (SNPs). We genotyped 96 SNPs with P values <5 × 10(-5) from an independent replication cohort of 962 patients. We then assessed the most interesting replicated SNPs using DNA samples collected from 219 patients who participated in separate GWA studies of HCV clearance. In the combined cohort of 2342 HCV-infected patients, the SNPs rs16851720 (in the total sample) and rs4374383 (in patients who received blood transfusions) were associated with fibrosis progression (P(combined) = 8.9 × 10(-9) and 1.1 × 10(-9), respectively). The SNP rs16851720 is located within RNF7, which encodes an antioxidant that protects against apoptosis. The SNP rs4374383, together with another replicated SNP, rs9380516 (P(combined) = 5.4 × 10(-7)), were linked to the functionally related genes MERTK and TULP1, which encode factors involved in phagocytosis of apoptotic cells by macrophages. Our GWA study identified several susceptibility loci for HCV-induced liver fibrosis; these were linked to genes that regulate apoptosis. Apoptotic control might therefore be involved in liver fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The algebraic expressions for the anharmonic contributions to the Debye-Waller factor up to 0(A ) and 0 L% ) £ where ^ is the scattering wave-vector] have been derived in a form suitable for cubic metals with small ion cores where the interatomic potential extends to many neighbours. This has been achieved in terms of various wave-vector dependent tensors, following the work of Shukla and Taylor (1974) on the cubic anharmonic Helmholtz free energy. The contribution to the various wave-vector dependent tensors from the coulomb and the electron-ion terms in the interatomic metallic potential has been obtained by the Ewald procedure. All the restricted multiple whole B r i l l o u i n zone (B.Z.) sums are reduced to single whole B.Z. sums by using the plane wave representation of the delta function. These single whole B.Z. sums are further reduced to the •%?? portion of the B.Z. following Shukla and Wilk (1974) and Shukla and Taylor (1974). Numerical calculations have been performed for sodium where the Born-Mayer term in the interatomic potential has been neglected because i t is small £ Vosko (1964)3 • *n o^er to compare our calculated results with the experimental results of Dawton (1937), we have also calculated the r a t io of the intensities at different temperatures for the lowest five reflections (110), (200), (220), (310) and (400) . Our calculated quasi-harmonic results agree reasonably well with the experimental results at temperatures (T) of the order of the Debye temperature ( 0 ). For T » © ^ 9 our calculated anharmonic results are found to be in good agreement with the experimental results.The anomalous terms in the Debye-Waller factor are found not to be negligible for certain reflections even for T ^ ©^ . At temperature T yy Op 9 where the temperature is of the order of the melting temperature (Xm) » "the anomalous terms are found to be important almost for all the f i ve reflections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RelAPS is an interactive system assisting in proving relation-algebraic theorems. The aim of the system is to provide an environment where a user can perform a relation-algebraic proof similar to doing it using pencil and paper. The previous version of RelAPS accepts only Horn-formulas. To extend the system to first order logic, we have defined and implemented a new language based on theory of allegories as well as a new calculus. The language has two different kinds of terms; object terms and relational terms, where object terms are built from object constant symbols and object variables, and relational terms from typed relational constant symbols, typed relational variables, typed operation symbols and the regular operations available in any allegory. The calculus is a mixture of natural deduction and the sequent calculus. It is formulated in a sequent style but with exactly one formula on the right-hand side. We have shown soundness and completeness of this new logic which verifies that the underlying proof system of RelAPS is working correctly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If you want to know whether a property is true or not in a specific algebraic structure,you need to test that property on the given structure. This can be done by hand, which can be cumbersome and erroneous. In addition, the time consumed in testing depends on the size of the structure where the property is applied. We present an implementation of a system for finding counterexamples and testing properties of models of first-order theories. This system is supposed to provide a convenient and paperless environment for researchers and students investigating or studying such models and algebraic structures in particular. To implement a first-order theory in the system, a suitable first-order language.( and some axioms are required. The components of a language are given by a collection of variables, a set of predicate symbols, and a set of operation symbols. Variables and operation symbols are used to build terms. Terms, predicate symbols, and the usual logical connectives are used to build formulas. A first-order theory now consists of a language together with a set of closed formulas, i.e. formulas without free occurrences of variables. The set of formulas is also called the axioms of the theory. The system uses several different formats to allow the user to specify languages, to define axioms and theories and to create models. Besides the obvious operations and tests on these structures, we have introduced the notion of a functor between classes of models in order to generate more co~plex models from given ones automatically. As an example, we will use the system to create several lattices structures starting from a model of the theory of pre-orders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New pandemics are a serious threat to the health of the entire world. They are essentially of viral origin and spread at large speed. A meeting on this topic was held in Lyon, France, within the XIXth Jacques Cartier Symposia, a series of France-Québec meetings held every year. New findings on HIV and AIDS, on HCV and chronic hepatitis, and an update on influenza virus and flu were covered during this meeting on December 4 and 5, 2006. Aspects of viral structure, virus-host interactions, antiviral defenses, drugs and vaccinations, and epidemiological aspects were discussed for HIV and HCV. Old and recent data on the flu epidemics ended this meeting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes. Deux grand sujets seront traités. Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes. Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes. Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème. Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature.